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ABSTRACT

High-Order Accurate Solutions to the Helmholtz Equationin the Presence of Boundary Singularities

Report Title

Problems of time-harmonic wave propagation arise in important fields of study such as geological surveying, radar 
detection/evasion, and aircraft design. These often involve high-frequency waves, which demand high-order methods 
to mitigate the dispersion error. We propose a high-order method for computing solutions to the variable-coe�cient 
inhomogeneous Helmholtz equation in two dimensions on domains bounded by piecewise smooth curves of arbitrary 
shape with a finite number of boundary singularities at known locations.



We utilize compact finite dfference (FD) schemes on regular structured grids to achieve high-order

accuracy due to their e�fficiency and simplicity, as well as the capability to approximate variable-coe�cient 
dfferential operators. In this work, a 4th-order compact FD scheme for the variable-coe�fficient Helmholtz equation 
on a Cartesian grid in 2D is derived and tested. The well known limitation of finite differences is that they lose 
accuracy when the boundary curve does not coincide with the discretization grid, which is a severe restriction on the 
geometry of the computational domain. Therefore, the algorithm presented in this work combines high-order FD 
schemes with the method of difference potentials (DP), which retains the effi�ciency of FD while allowing for 
boundary shapes that are not aligned with the grid without sacrificing the

accuracy of the FD scheme.



Additionally, the theory of DP allows for the universal treatment of the boundary conditions. One of the significant 
contributions of this work is the development of an implementation that

accommodates general boundary conditions (BCs). In particular, Robin BCs with discontinuous

coe�cients are studied, for which we introduce a piecewise parameterization of the boundary

curve. Problems with discontinuities in the boundary data itself are also studied.



We observe that the design convergence rate suffers whenever the solution loses regularity

due to the boundary conditions. This is because the FD scheme is only consistent for classical

solutions of the PDE. For this reason, we implement the method of singularity subtraction

as a means for restoring the design accuracy of the scheme in the presence of singularities at

the boundary. While this method is well studied for low order methods and for problems in

which singularities arise from the geometry (e.g., corners), we adapt it to our high-order scheme

for curved boundaries via a conformal mapping and show that it can also be used to restore

accuracy when the singularity arises from the BCs rather than the geometry.



Altogether, the proposed methodology for 2D boundary value problems is computationally

e�fficient, easily handles a wide class of boundary conditions and boundary shapes that are not

aligned with the discretization grid, and requires little modification for solving new problems.



ABSTRACT

BRITT, JR., DARRELL STEVEN. High-Order Accurate Solutions to the Helmholtz Equation
in the Presence of Boundary Singularities. (Under the direction of Semyon Tsynkov.)

Problems of time-harmonic wave propagation arise in important fields of study such as
geological surveying, radar detection/evasion, and aircraft design. These often involve high-
frequency waves, which demand high-order methods to mitigate the dispersion error. We pro-
pose a high-order method for computing solutions to the variable-coefficient inhomogeneous
Helmholtz equation in two dimensions on domains bounded by piecewise smooth curves of
arbitrary shape with a finite number of boundary singularities at known locations.

We utilize compact finite difference (FD) schemes on regular structured grids to achieve high-
order accuracy due to their efficiency and simplicity, as well as the capability to approximate
variable-coefficient differential operators. In this work, a 4th-order compact FD scheme for the
variable-coefficient Helmholtz equation on a Cartesian grid in 2D is derived and tested. The well
known limitation of finite differences is that they lose accuracy when the boundary curve does
not coincide with the discretization grid, which is a severe restriction on the geometry of the
computational domain. Therefore, the algorithm presented in this work combines high-order
FD schemes with the method of difference potentials (DP), which retains the efficiency of FD
while allowing for boundary shapes that are not aligned with the grid without sacrificing the
accuracy of the FD scheme.

Additionally, the theory of DP allows for the universal treatment of the boundary conditions.
One of the significant contributions of this work is the development of an implementation that
accommodates general boundary conditions (BCs). In particular, Robin BCs with discontinuous
coefficients are studied, for which we introduce a piecewise parameterization of the boundary
curve. Problems with discontinuities in the boundary data itself are also studied.

We observe that the design convergence rate suffers whenever the solution loses regularity
due to the boundary conditions. This is because the FD scheme is only consistent for classical
solutions of the PDE. For this reason, we implement the method of singularity subtraction
as a means for restoring the design accuracy of the scheme in the presence of singularities at
the boundary. While this method is well studied for low order methods and for problems in
which singularities arise from the geometry (e.g., corners), we adapt it to our high-order scheme
for curved boundaries via a conformal mapping and show that it can also be used to restore
accuracy when the singularity arises from the BCs rather than the geometry.

Altogether, the proposed methodology for 2D boundary value problems is computationally
efficient, easily handles a wide class of boundary conditions and boundary shapes that are not
aligned with the discretization grid, and requires little modification for solving new problems.
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Chapter 1

Introduction

In the present work, we develop a high-order numerical method for solving linear elliptic
PDEs with well-behaved variable coefficients on domains with piecewise-smooth boundaries
and piecewise-smooth boundary conditions. We expect solutions to be predominantly classical,
but some singularities may arise at known locations along the boundary due to either the geom-
etry of the boundary shape (e.g., corners or cusps) or the boundary conditions (e.g., piecewise
smooth with a known jump discontinuity). Our model equation for this pursuit will be the
inhomogeneous Helmholtz equation,

∆u+ k2u = f, x ∈ Ω, (1.1)

in which we permit the Laplacian operator to be replaced by a more general variable-coefficient
operator and we allow for variation in the wavenumber, k. Variable coefficients may arise from
the use of non-Cartesian geometries and may also occur naturally in problems of wave propa-
gation through inhomogeneous media. In the case of inhomogeneous media, the equation (1.1)
may more generally be written as follows:

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
b(x, y)

∂u

∂y

)
+ k2(x, y)u = f, (1.2)

where a, b, and k are smooth functions of (x, y) except perhaps along a known interface. The
regions of smooth variation of these parameters represent materials with smoothly varying
properties - for example, the density of a material may smoothly change when subjected to
a heat source at one end. On the other hand, a jump condition at an interface would model
contact between two different materials, such as an airplane which is composed of several
different plastics and metals. These criteria are essential for simulations involving most real-
world objects.
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High-order accuracy is desirable in the numerical solution of wave propagation problems.
It is known for the Helmholtz equation that in order to maintain a given level of error as the
wavenumber k increases one must refine the computational grid faster than the wavelength
λ = 2π/k decreases. More precisely, the quantity kp+1hp must remain constant, where h is the
discretization size and p is the order of accuracy of the scheme. This is known as the dispersion
error or pollution effect [1,2,3]. In order to avoid this undesirable behavior, the number of points
per wavelength, ∼ 1/hk, must grow proportional to k1/p. It is evident then that employing a
higher order of accuracy, p, slows this growth, meaning that higher-order methods will be
considerably more efficient than lower-order methods for solving equation (1.1), especially on
domains which are large relative to the wavelength. There are many applications in which the
size of the object being studied is large in relation to the waves propagating through it, such
as medical imaging (i.e., the propagation of ultrasound waves through the human body) and
aircraft design (i.e., the propagation of electronic communication signals through the craft).

Finite difference (FD) schemes on regular-structured discretization grids provide the sim-
plest and least expensive avenue for achieving high-order accuracy and can also easily be built
for variable-coefficient equations; however, they are limited to classical solutions of the PDE and
lose accuracy when the boundary shape is not aligned with the grid (e.g., a circular boundary
on a Cartesian grid). The loss of accuracy in the presence of non-conforming boundaries is at-
tributable to staircasing [4,5], and represents a substantial limitation. The primary alternatives
to finite differences are finite element methods (FEM) and boundary element methods (BEM).
Both of these methods easily accommodate difficult geometries, but each have limitations of
their own. In particular, it is possible to build high-order approximations for arbitrary boundary
shapes with FEM; however, achieving high order requires substantial modifications to the al-
gorithm and also greatly increases the computational cost by requiring additional variables per
grid node. In BEM, any change in the boundary conditions requires analysis of the equivalent
boundary sources to ensure that the resulting integral equation is well-posed. Additionally,
BEMs are limited to constant-coefficient PDEs since they rely on explicit knowledge of the
fundamental solution. We propose a methodology which allows accurate computation by FD
on grids which are not aligned with the boundary shape, and, in doing so, we do not compro-
mise the utility or efficiency of FD in computing with high-order accuracy and for variable-
coefficient equations. Furthermore, we develop a method for restoring accuracy in the case of
near-boundary singularities.

In the following work, we employ the method of difference potentials (DP) developed by
Ryaben’kii. The theory of difference potentials is related to the theory of Calderon operators,
see [6, 7]. A comprehensive account of the method of difference potentials can be found in the
monograph [8] (see also [9]), and a brief account can also be found in [10, 11]. Some of its
other recent developments are presented in [12, 13, 14, 15, 16, 17]. DP permits a broad range of
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computational capabilities, see [17, 18], allowing for differential equations with variable coef-
ficients and for both homogeneous and inhomogeneous equations. Additionally, in either the
case of inhomogeneities or of variable properties of the medium, there is no requirement of
having a gap between the region of inhomogeneity/variation and the boundary of the domain.
The method also works for curvilinear boundaries and interfaces of arbitrary shape. In this
work, we demonstrate its universal approach to the treatment of the boundary conditions. In
doing so, we introduce a piecewise parameterization of the boundary curve in order to permit
piecewise-smooth boundary conditions (i.e., those with discontinuities). While one natural use
of the piecewise parameterization would be to solve problems with boundary shapes that require
such a parameterization due to the geometry (such as domains with corners), the focus of the
work at hand is on splitting the parameterization of a smooth boundary curve into multiple
segments at points of discontinuity in the Robin coefficients or points of singularity in the
boundary data themselves in order to restore the convergence order of the scheme. The method
is designed so that it does not require the approximation of the boundary conditions on the
grid and so is applicable to non-conforming boundaries. Moreover, boundary conditions of any
type are allowed — not only the simplest Neumann or Dirichlet, but also, for example, mixed or
Robin, even with variable and discontinuous coefficients. In doing so, the core of the numerical
algorithm always remains the same. Changes in the boundary conditions are accommodated
by making only minor modifications to the computational procedure (unlike methods based on
boundary integral equations).

The class of problems we seek to solve are expected to have predominantly classical solutions;
however, the flexibility of our approach to BCs can easily result in the solution becoming singular
at the boundary, leading to a loss of consistency of the FD scheme and subsequently a loss of
accuracy. In general, the solution may have lower regularity due to either a discontinuity in
the coefficients of the boundary condition, a discontinuity in the boundary data themselves,
or the geometry of the boundary curve (e.g., a cusp or corner), and our methodology can
easily be applied to problems of each of these types. In such cases, a near-boundary singularity
develops in the solution, which translates into a greatly diminished convergence rate from the
FD scheme since the solution is no longer classical. The design convergence rate can be restored
by subtracting several leading terms in the expansion of the solution near the singular point
and then solving only for the remaining regular part. In developing this expansion, we follow an
approach previously proposed in [19] and modify it so as to take into account that the segments
of the boundary that meet at a given singular point may be curves rather than only straight
lines, and do so in such a way that high-order accuracy is maintained. We also note that an
earlier work that addresses singularities of the solution using difference potentials is presented
in [20,21,22] but does not involve computations with high-order accuracy.

In Chapter 2, a fourth-order compact finite difference scheme for the variable-coefficient
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Helmholtz equation (1.2) on a Cartesian grid is derived using the equation-based method [23,24],
and this will serve as the solver for our subsequent work on difference potentials. In Chapter 3,
we present a formulation of the method of difference potentials and detail a universal approach
to treating boundary conditions [25]. We numerically demonstrate the limitations of the method
by showing that the boundary conditions may give rise to singularities in the solution which
cause a loss of accuracy. In Chapter 4, the method of [19] for treating near-boundary singularities
is extended for use with high-order methods and implemented with the method of difference
potentials to solve singular problems without degradation of the design convergence rate [26].
Chapter 5 discusses error estimation as it relates to the efficiency of the overall scheme, taking
a second look at the numerical examples of the previous chapters and adding several numerical
examples to give insight and guidance. Finally, Chapter 6 proposes future extensions of this
work and discusses some of the challenges that will need to be addressed in doing so.
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Chapter 2

Finite Difference Methods

2.1 Introduction

In this chapter, we build a fourth-order compact finite difference scheme for the variable-
coefficient Helmholtz equation in two dimensions via the equation-based method [23, 24]. Tra-
ditional finite difference schemes achieve high order by extending the FD stencil outward in
the coordinate directions, but this is undesirable because it increases the order of the difference
equation beyond that of the underlying differential equation. In particular, this means that
the difference equation will require more boundary conditions than those needed for the dif-
ferential equation, meaning one must compensate by implementing purely numerical boundary
conditions. One alternative is to use Padé expansions to replace the weight of the center node
using a Bessel function [27], and this has been done for problems with Dirichlet and Neuman
BCs [27, 28]; however, Pade approximations are limited to constant-coefficient equations. A
more useful approach is to employ an equation-based method, in which the Helmholtz equation
and its derivatives are used to find alternate representations of the truncation error terms of a
classical second-order scheme, and these representations can then be sufficiently approximated
on a compact 9-point stencil to increase the order of the scheme. It is important to note that,
according to the well-known Lax theorem, the scheme needs only to be consistent on solutions
to the equation [29]; therefore, the seeming limitation inherent in using the equation itself to
build our scheme in fact represents no loss of generality. The 9-point (3× 3) stencil is no wider
in any coordinate direction than that of the underlying second-order scheme, eliminating the
need for additional boundary constraints [27, 30, 31, 23, 24, 32] and also resulting in a narrower
bandwidth of the FD matrix. Moreover, the equation-based approach can be used to construct
high-order physical as well as radiation boundary conditions, as has been shown in [33]. While
this technique will be used for the boundary conditions in this chapter, the choice of the BCs is
not guided by physical boundary constraints but rather they are chosen to cater to the needs
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of the auxiliary problems of the method of difference potentials used in subsequent chapters.
In Section 2.2, we demonstrate the equation-based method in simplified settings, beginning

with the Helmholtz equation in 1D followed by a demonstration of how the method can also
be used for the 2D Helmholtz equation in polar coordinates. As we progress in complexity,
we next examine the general variable-coefficient equation (1.2) in Cartesian coordinates for 2D
in Section 2.3 using a regular-structured Cartesian grid. Due to the requirement that finite
difference schemes be aligned with the boundary shape of the domain, we subsequently apply
the numerical method to interior problems on a square. On such a domain, the Helmholtz
equation is known to experience resonances when the wavenumber k is such that −k2 coincides
with an eigenvalue of the Laplacian operator. This can be avoided by implementing Sommerfeld-
type boundary conditions along the left and right edges of the square, with a simple Dirichlet
boundary condition along the top and bottom edges. The high-order implementation of these
boundary conditions is the subject of Section 2.4. Numerical simulations are performed in
Section 2.5 to demonstrate the convergence rate. Finally, a discussion is given in Section 2.6 re-
garding the relationship of the finite difference schemes developed in this chapter to the method
of difference potentials presented in Chapter 3, justifying the choice of boundary conditions for
the finite difference problems in this chapter as well as the emphasis on the Cartesian scheme
in particular.

2.2 The Helmholtz equation in polar coordinates

The Helmholtz equation in polar coordinates is given by

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
+ k2u = f. (2.1)

The radial term of (2.1) is a particular example of the type of variable-coefficient differential
operator that we treat in Section 2.3. As a demonstration of the equation-based method, we
will first consider the Helmholtz equation in 1D, which is posed as the following inhomogeneous
ODE:

1
r

d

dr

(
r
du

dr

)
+ k2u =

d2u

dr2
+

1
r

du

dr
+ k2u = f (2.2)

where f = f(r) is assumed given.
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2.2.1 One-dimensional example

For convenience, we rewrite (2.2) by solving for the variable-coefficient term:

1
r

d

dr

(
r
du

dr

)
= f − k2u = F, (2.3)

where F := f−k2u is a formal right-hand side. We first approximate equation (2.3) with second
order accuracy:

1
rm

1
h

(
rm+1/2

um+1 − um
h

− rm−1/2
um − um−1

h

)
= Fm (2.4)

Analysis of the truncation error for scheme (2.4) shows that

1
rm

1
h

(
rm+1/2

um+1 − um
h

− rm−1/2
um − um−1

h

)
=

1
r

d

dr

(
r
du

dr

) ∣∣∣∣
m

+
h2

12

(
u(4)
m +

2
r
u(3)
m

)
+O(h4)

(2.5)

Consequently, to achieve fourth order accuracy, we need to eliminate the O(h2) term that
contains u(4) and u(3) on the right-hand side of (2.5). We begin by rearranging the ODE (2.3)
to isolate the second derivative term:

d2u

dr2
= F − 1

r

du

dr
. (2.6)

We then differentiate this expression twice to obtain

d3u

dr3
= F ′ − 1

r

d2u

dr2
+

1
r2

du

dr
(2.7)

and
d4u

dr4
= F ′′ − 1

r

d3u

dr3
+

2
r2

d2u

dr2
− 2
r3

du

dr
. (2.8)

Furthermore, we substitute equation (2.6) into (2.7) and simplify as follows:

d3u

dr3
=F ′ − 1

r

d2u

dr2
+

1
r2

du

dr

=F ′ − 1
r

(
F − 1

r

du

dr

)
+

1
r2

du

dr

=F ′ − 1
r
F +

2
r

du

dr
.

(2.9)
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Likewise, we may now substitute expressions (2.6) and (2.9) into (2.8), which ultimately yields

d4u

dr4
= F ′′ − 1

r
F ′ +

3
r2
F − 4

r3

du

dr
. (2.10)

We have now achieved alternate representations of the terms u(3) and u(4) which appear in the
O(h2) term of (2.5), so that we can now replace the term u(4) + 2

ru
(3) as follows using (2.9-2.10):

d4u

dr4
+

2
r

d3u

dr3
= F ′′ +

1
r
F ′ +

1
r2

d2u

dr2
− 1
r3

du

dr

= F ′′ +
1
r
F ′ +

1
r2

(
d2u

dr2
− 1
r

du

dr

)
= F ′′ +

1
r
F ′ +

1
r2

(
F − 2

r

du

dr

)
,

from which we obtain, via formula (2.5), a fourth-order approximation:

1
rm

1
h

(
rm+1/2

um+1 − um
h

− rm−1/2
um − um−1

h

)
−h

2

12

(
F ′′ +

1
r
F ′ +

1
r2
F − 2

r3

du

dr

) ∣∣∣∣
m

=
1
r

d

dr

(
r
du

dr

) ∣∣∣∣
m

+O(h4).

(2.11)

Relation (2.11) yields the following approximation for the original ODE (2.2), provided that k
is constant:

1
rm

1
h

(
rm+1/2

um+1 − um
h

− rm−1/2
um − um−1

h

)
+ k2um

−h
2

12

(
F ′′ +

1
r
F ′ +

1
r2
F − 2

r3

du

dr

) ∣∣∣∣
m

= fm,

(2.12)

where the equation (2.2) was used to replace the truncation error terms of scheme (2.4) inside
the term ∼ h2

12 . Equation (2.12) is not quite a true finite-difference scheme because the terms
F, F ′, and F ′′ contain continuous derivatives of f and of u. To transform (2.12) into a fourth-
order finite difference scheme, we first realize that the term multiplied by h2

12 on the left-hand
side of (2.12) does not need to be evaluated exactly: it is sufficient to have it approximated with
second order accuracy since it is multiplied by the factor of h2

12 . Clearly this can be done for the
terms f, f ′, f ′′, u, u′ and u′′ by means of the standard central differences on a 3-node stencil.
If f(r) is known analytically, then one may use the exact derivatives of f . In either case, once
this is done the approximating relation (2.12) becomes a fourth-order accurate finite difference
scheme for equation (2.2) while still maintaining a compact 3-node stencil.
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As we will see in the next section, the equation-based method can also be used to build
high-order schemes in 2D for the polar Helmholtz equation on a compact 3× 3 stencil. Though
the expressions become more complicated, the key idea of using the derivatives of the equation
to obtain alternate representations of the terms of the truncation error which do not require a
larger stencil remains the same.

2.2.2 A scheme for the two-dimensional polar Helmholtz equation

The key consideration that enables us to extend the methodology of Section 2.2.1 to the two-
dimensional equation (2.1) is that the fourth order accurate approximations will be built in-
dependently for the individual second order differential operators of the Laplacian. Hence, we
write the following formal ODEs based on equation (2.1):

1
r

∂

∂r

(
r
∂u

∂r

)
= Fr ≡ f − k2u− 1

r2

∂2u

∂θ2
(2.13a)

1
r2

∂2u

∂θ2
= Fθ ≡ f − k2u− 1

r

∂

∂r

(
r
∂u

∂r

)
(2.13b)

Equations (2.13a) and (2.13b) are each identical to (2.3) up to the notation. Consequently, we
may continue to use formula (2.11) to obtain a fourth order accurate approximation of the
radial part of the Laplacian in (2.1):

1
rm

1
hr

(
rm+1/2

um+1,n − um,n
hr

− rm−1/2
um,n − um−1,n

hr

)
−h

2
r

12

(
∂2Fr
∂r2

+
1
r

∂Fr
∂r

+
1
r2
Fr −

2
r3

∂u

∂r

) ∣∣∣∣
m,n

=
1
r

∂

∂r

(
r
∂u

∂r

) ∣∣∣∣
m,n

+O(h4
r).

(2.14)

Relation (2.14) is different from its “parent” relation (2.11) in that the auxiliary right-hand
side Fr also contains the second derivative with respect to θ, see formula (2.13a) so that

∂Fr
∂r

=
∂f

∂r
− k2∂u

∂r
− ∂

∂r

(
1
r2

∂2u

∂θ2

)
,

∂2Fr
∂r2

=
∂2f

∂r2
− k2∂

2u

∂r2
− ∂2

∂r2

(
1
r2

∂2u

∂θ2

)
.

(2.15)
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Next, approximating the derivatives of u within (2.15) with second order accuracy via central
differences, we have

Fr
∣∣
m,n

= fm,n − k2um,n −
1
r2
m

um,n+1 − 2um,n + um,n−1

h2
θ

+O(h2
θ),

∂Fr
∂r

∣∣∣∣
m,n

=
∂f

∂r

∣∣∣∣
m,n

− k2um+1,n − um−1,n

2hr

− 1
2hr

( 1
r2
m+1

um+1,n+1 − 2um+1,n + um+1,n−1

h2
θ

− 1
r2
m−1

um−1,n+1 − 2um−1,n + um−1,n−1

h2
θ

)
+O(h2

r + h2
θ),

∂2Fr
∂r2

∣∣∣∣
m,n

=
∂2f

∂r2

∣∣∣∣
m,n

− k2um+1,n − 2um,n + um−1,n

h2
r

− 1
h2
r

( 1
r2
m+1

um+1,n+1 − 2um+1,n + um+1,n−1

h2
θ

− 2
r2
m

um,n+1 − 2um,n + um,n−1

h2
θ

+
1

r2
m−1

um−1,n+1 − 2um−1,n + um−1,n−1

h2
θ

)
+O(h2

r + h2
θ).

(2.16)

Substituting expressions (2.16) into (2.14) and also using the central difference approximation

∂u

∂r

∣∣∣∣
m,n

=
um+1,n − um−1,n

2hr
+O(h2

r), (2.17)

we obtain a fourth order accurate finite difference approximation of ∂
∂r

(
r ∂u∂r

)
on a compact

3 × 3 stencil. Note again that the derivatives of f in formulae (2.16) can be computed either
analytically or also numerically by central differences, depending on how the right-hand side is
defined.

The treatment of the second derivative with respect to θ, which will be based on equation
(2.13b), is even more straightforward. We begin with the standard second order accurate central
difference scheme:

1
r2
m

um,n+1 − 2um,n + um,n−1

h2
θ

= Fθ
∣∣
m,n

The analysis of its truncation error shows that

1
r2
m

um,n+1 − 2um,n + um,n−1

h2
θ

=
1
r2

∂2u

∂θ2
+
h2
θ

12

(
1
r2

∂4u

∂θ4

)
+O(h4

θ).
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Consequently,

1
r2
m

um,n+1 − 2um,n + um,n−1

h2
θ

−
h2
θ

12
∂2Fθ
∂θ2

∣∣∣∣
m,n

=
1
r2

∂2u

∂θ2

∣∣∣∣
m,n

+O(h4
θ). (2.18)

From differentiating (2.13b), we have

∂2Fθ
∂θ2

=
∂2f

∂θ2
− k2∂

2u

∂θ2
− 1
r

∂3

∂r∂θ2

(
r
∂u

∂r

)
. (2.19)

Using central differences to approximate the terms of (2.19) yields:

∂2Fθ
∂θ2

∣∣∣∣
m,n

=
∂2f

∂θ2

∣∣∣∣
m,n

− k2um,n+1 − 2um,n + um,n−1

h2
θ

− 1
rm

1
h2
r

(
rm+1/2

um+1,n+1 − 2um+1,n + um+1,n−1

h2
θ

− 2rm
um,n+1 − 2um,n + um,n−1

h2
θ

+ rm−1/2
um−1,n+1 − 2um−1,n + um−1,n−1

h2
θ

)
+O(h2

r + h2
θ).

(2.20)

Substituting expression (2.20) into (2.18), we obtain a fourth order accurate finite-difference
approximation of ∂2u

∂θ2 on a compact 3× 3 stencil.
The overall fourth order accurate compact scheme for the Helmholtz equation (2.1) is then

obtained by combining (2.14) and (2.18):

1
rm

1
hr

(
rm+1/2

um+1,n − um,n
hr

− rm−1/2
um,n − um−1,n

hr

)
+

1
r2
m

um,n+1 − 2um,n + um,n−1

h2
θ

+ k2um,n

− h2
r

12

(
∂2Fr
∂r2

+
1
r

∂Fr
∂r

+
1
r2
Fr −

2
r3

∂u

∂r

) ∣∣∣∣
m,n

−
h2
θ

12
∂2Fθ
∂θ2

∣∣∣∣
m,n

= fm,n,

(2.21)

where the correction terms ∼ h2
r

12 and ∼ h2
θ

12 are to be evaluated according to (2.16), (2.17), and
(2.20).

This same procedure of eliminating the truncation error by the equation-based method can
also be used to build high-order schemes for other equations. In particular, the goal of the
next section is to do the same for a more general form of the Helmholtz equation in Cartesian
coordinates.
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2.3 The variable-coefficient Helmholtz equation in 2D

We now construct a compact fourth order accurate finite difference scheme for the variable
coefficient Helmholtz equation (1.2). As in Section 2.2.2, we begin by reformulating equation
(1.2) as formal ODEs in order to treat the second-order differential terms of the Laplacian
separately:

∂

∂x

(
a(x, y)

∂u

∂x

)
= Fx

def= f − k2u− ∂

∂y

(
b(x, y)

∂u

∂y

)
(2.22a)

and

∂

∂y

(
b(x, y)

∂u

∂y

)
= Fy

def= f − k2u− ∂

∂x

(
a(x, y)

∂u

∂x

)
. (2.22b)

Using the same step size in each direction, h = hx = hy, we next approximate the left-hand
sides of (2.22a) and (2.22b) at the grid node (m,n) with second order accuracy as follows:

∂

∂x

(
a(x, y)

∂u

∂x

)
=

1
h

(
am+ 1

2
,n

um+1,n − um,n
h

− am− 1
2
,n

um,n − um−1,n

h

)
+O(h2) (2.23a)

and

∂

∂y

(
b(x, y)

∂u

∂y

)
=

1
h

(
bm,n+ 1

2

um,n+1 − um,n
h

− bm,n− 1
2

um,n − um,n−1

h

)
+O(h2). (2.23b)

Adding (2.23a) and (2.23b) and then approximating the non-differentiated term and the right-
hand side of (1.2) as

(
k2u
)
m,n

and fm,n respectively, we obtain a second order approximation
of (1.2). Our aim is to extend (2.23) to a fourth order accurate approximation. Analysis of the
truncation error for the finite differences of (2.23) yields the following:

1
h

(
am+ 1

2
,n

um+1,n − um,n
h

− am− 1
2
,n

um,n − um−1,n

h

)
(2.24a)

=
∂

∂x

(
a(x, y)

∂u

∂x

)
+
h2

12

(
auxxxx + 2axuxxx +

3axxuxx
2

+
axxxux

2

)
+O(h4),

1
h

(
bm,n+ 1

2

um,n+1 − um,n
h

− bm,n− 1
2

um,n − um,n−1

h

)
(2.24b)

=
∂

∂y

(
b(x, y)

∂u

∂y

)
+
h2

12

(
buyyyy + 2byuyyy +

3byyuyy
2

+
byyyuy

2

)
+O(h4).

In order to eliminate the O(h2) error terms in (2.24a), we first differentiate the ODE (2.22a)
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twice in x and obtain a system of three equations with respect to uxx, uxxx, and uxxxx:

axux + auxx = Fx,

axxux + 2axuxx + auxxx =
∂Fx
∂x

,

axxxux + 3axxuxx + 3axuxxx + auxxxx =
∂2Fx
∂x2

.

(2.25)

Solving each equation of (2.25) for the highest derivative of u, we obtain

uxx =
1
a

(Fx − axux), (2.26a)

uxxx =
1
a

(
∂Fx
∂x
− axxux − 2axuxx

)
, (2.26b)

uxxxx =
1
a

(
∂2Fx
∂x2

− axxxux − 3axxuxx − 3axuxxx

)
. (2.26c)

Substituting (2.26a) into (2.26b) and also substituting (2.26a-2.26b) into (2.26c), we arrive at
equations that contain only first derivatives of u on the right-hand side:

uxx =
1
a

(Fx − axux), (2.27a)

uxxx =
1
a

(
∂Fx
∂x
− axxux −

2ax
a

(Fx − axux)
)
, (2.27b)

uxxxx =
1
a

[
∂2Fx
∂x2

− axxxux −
3axx
a

(Fx − axux)
]

(2.27c)

− 3ax
a2

[
∂Fx
∂x
− axxux −

2ax
a

(Fx − axux)
]
.

By substituting expressions (2.26a), (2.27b), and (2.27c) for uxx, uxxx, and uxxxx, respectively,
into the O(h2) terms on the right-hand side of (2.24a), we have

auxxxx + 2axuxxx +
3axxuxx

2
+
axxxux

2
=
∂2Fx
∂x2

− ax
a

∂Fx
∂x

+
(

2a2
x

a2
− 3axx

2a

)
Fx (2.28)

+
(
−axxx

2
+

5axxax
2a

− 2a3
x

a2

)
ux.

To achieve overall fourth order accuracy for (2.24a), it is sufficient to approximate the terms
multiplied by h2

12 (i.e., the right-hand side of (2.28)) with second order accuracy. For simplicity,
assume that all derivatives of a and b on the right-hand side of (2.28) are known analytically.1

Next, we differentiate formula (2.22a) to obtain formulae for ∂Fx
∂x and ∂2Fx

∂x2 :
1Otherwise, we can also replace them by finite differences if a and b can be sampled on the grid, although

this may require a larger stencil.
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Fx =f − k2u− byuy − buyy,
∂Fx
∂x

=fx − [bxyuy + byuxy + bxuyy + buyyx +
(
k2u
)
x
],

∂2Fx
∂x2

=fxx − [byxxuy + 2byxuyx + byuyxx + bxxuyy + 2bxuyyx + buyyxx + (k2u)xx
]
.

(2.29)

We use central differences on the standard five-node stencil to approximate (k2u)x, (k2u)xx,
uy, uyy, fx, and fxx in (2.29) with second-order accuracy. We approximate the remaining terms
uxy, uyyx, uxxy, and uxxyy on a compact 3×3 stencil (which contains the four additional corner
nodes) also with second order accuracy as follows:

uxy =
1

2h

(
um+1,n+1 − um−1,n+1

2h
− um+1,n−1 − um−1,n−1

2h

)
+O(h2),

uxxy =
1
h2

(
um+1,n+1 − um+1,n−1

2h
+
um−1,n+1 − um−1,n−1

2h
−2

um,n+1 − um,n−1

2h

)
+O(h2),

uyyx =
1
h2

(
um+1,n+1 − um−1,n+1

2h
+
um+1,n−1 − um−1,n−1

2h
−2

um+1,n − um−1,n

2h

)
+O(h2),

uxxyy =
1
h2

(
um+1,n+1 + um+1,n−1 − 2um+1,n

h2
+
um−1,n+1 + um−1,n−1 − 2um−1,n

h2

−2
um,n+1 + um,n−1 + 2um,n

h2
)
)

+O(h2).

Altogether, we obtain a second order accurate approximation of all the terms on the right-hand
sides of equalities (2.29) on a 3× 3 stencil:

Fx =fm,n − (k2u)m,n −
by
2h

(um,n+1 − um,n−1) (2.30a)

− bum,n+1 − 2um,n + um,n−1

h2
+O(h2),

∂Fx
∂x

=fx − [bxyuy + byuxy + bxuyy + buyyx + (k2u)x] (2.30b)

=
fm+1,n − fm−1,n

2h
−
[
bxy
2h

(um,n+1 − um,n−1)

+
by

4h2
(um+1,n+1 − um−1,n+1 − um+1,n−1 + um−1,n−1)

+
bx
h2

(um,n+1 + um,n−1 − 2um,n)

+
b

2h3
(um+1,n+1 − um−1,n+1 + um+1,n−1 − um−1,n−1

−2(um+1,n − um−1,n)) +
(k2u)m+1,n − (k2u)m−1,n

2h

]
+O(h2),

∂2Fx
∂x2

=fxx − [byxxuy + 2byxuyx + byuyxx + bxxuyy (2.30c)
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+ 2bxuyyx + buyyxx + (k2u)xx]

=
fm+1,n + fm−1,n − 2fm,n

h2
−
[
byxx
2h

(um,n+1 − um,n−1)

+
byx
2h2

(um+1,n+1 − um−1,n+1 − um+1,n−1 + um−1,n−1)

+
by

2h3
(um+1,n+1 − um+1,n−1 + um−1,n+1 − um−1,n−1

−2(um,n+1 − um,n−1)) +
bxx
h2

(um,n+1 + um,n−1 − 2um,n)

+
bx
h3

(um+1,n+1 − um−1,n+1 + um+1,n−1 − um−1,n−1 − 2(um+1,n − um−1,n))

+
b

h4
(um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1 + 4um,n

−2(um,n+1 + um,n−1 + um+1,n + um−1,n))

+
(k2u)m+1,n − 2(k2u)m,n + (k2u)m−1,n

h2

]
+O(h2).

As there is a complete symmetry between the derivatives in the x and y directions, the entire
previous derivation can be easily duplicated in the y direction. Namely, we start with differ-
entiating equation (2.22b) twice in y [cf. formula (2.25)], then we express the O(h2) term on
the right hand side of (2.24b) via uy, Fy,

∂Fy
∂y , and ∂2Fy

∂y2 [cf. formula (2.28)], and, in order to
obtain a compact discretization, approximate the resulting terms with second order accuracy
on a 3× 3 stencil:

Fy =fm,n − (k2)um,n −
ax
2h

(um+1,n − um−1,n) (2.31a)

− aum+1,n − 2um,n + um−1,n

h2
+O(h2),

∂Fy
∂y

=fy − [axyux + axuxy + ayuxx + auxxy + (k2u)y] (2.31b)

=
fm,n+1 − fm,n−1

2h
−
[axy

2h
(um+1,n − um−1,n)

+
ax
4h2

(um+1,n+1 − um−1,n+1 − um+1,n−1 + um−1,n−1)

+
ay
h2

(um+1,n + um−1,n − 2um,n)

+
a

2h3
(um+1,n+1 − um+1,n−1 + um−1,n+1 − um−1,n−1

− 2(um,n+1 − um,n−1)) +
(k2u)m,n+1 − (k2u)m,n−1

2h

]
+O(h2),

∂2Fy
∂y2

=fyy − [axyyux + 2axyuxy + axuxyy + ayyuxx (2.31c)

+ 2ayuxxy + auxxyy + (k2u)yy]
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=
fm,n+1 + fm,n−1 − 2fm,n

h2
−
[axyy

2h
(um+1,n − um−1,n)

+
axy
2h2

(um+1,n+1 − um−1,n+1 − um+1,n−1 + um−1,n−1)

+
ax
2h3

(um+1,n+1 − um−1,n+1 + um+1,n−1 − um−1,n−1

− 2(um+1,n − um−1,n)) +
ayy
h2

(um+1,n + um−1,n − 2um,n)

+
ay
h3

(um+1,n+1 − um+1,n−1 + um−1,n+1 − um−1,n−1 − 2(um,n+1 − um,n−1))

+
b

h4
(um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1 + 4um,n

−2(um,n+1 + um,n−1 + um+1,n + um−1,n))

+
(k2u)m,n+1 − 2(k2u)m,n + (k2u)m,n−1

h2

]
+O(h2).

Finally, assembling all the terms, we obtain a fourth order accurate approximation for equation
(1.2) on a compact 3× 3 stencil:

1
h

(
am+ 1

2
,n

um+1,n − um,n
h

− am− 1
2
,n

um,n − um−1,n

h

)
+

1
h

(
bm,n+ 1

2

um,n+1 − um,n
h

− bm,n− 1
2

um,n − um,n−1

h

)
−h

2

12

(
∂2Fx
∂x2

− ax
a

∂Fx
∂x

+
[

2a2
x

a2
− 3axx

2a

]
Fx

+
[
−axxx

2
+

5axxax
2a

− 2a3
x

a2

]
um+1,n − um−1,n

2h

) ∣∣∣∣
m,n

−h
2

12

(
∂2Fy
∂y2

− by
b

∂Fy
∂y

+

[
2b2y
b2
− 3byy

2b

]
Fy

+

[
−byyy

2
+

5byyby
2b

−
2b3y
b2

]
um,n+1 − um,n−1

2h

)∣∣∣∣
m,n

+ (k2u)m,n = fm,n

(2.32)

In formula (2.32), the terms in parentheses premultiplied by h2

12 are evaluated on the grid with
second order accuracy using formulae (2.30) and (2.31). Scheme (2.30-2.32) is built on a square-
cell Cartesian grid with step size h. It can be decomposed into a 9-node (3× 3) compact stencil
operating on u and a 5-node stencil operating on f , see Figure 2.1.

In Section 2.5, the scheme (2.30-2.32) is applied to several variable-coefficient problems;
however, for Chapters 3 and 4, only constant-coefficient problems will be solved. In the case of
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Figure 2.1: Stencils of the compact scheme (2.30-2.32).

constant coefficients, the scheme (2.30-2.32) assumes a much simpler form:

1
h2

(um+1,n + um,n+1 + um−1,n + um,n−1 − 4um,n)

+
1

6h2
[um+1,n+1 + um+1,n−1 + um−1,n+1 − um−1,n−1 + 4um,n

−2(um,n+1 + um,n−1 + um+1,n + um−1,n)]

+
k2

12
(um+1,n + um,n+1 + 8um,n + um−1,n + um,n−1)

= fm,n +
1
12

(fm+1,n + fm,n+1 − 4fm,n + fm−1,n + fm,n−1) .

(2.33)

We note also that a sixth order accurate scheme is constructed for the constant-coefficient
Helmholtz equation in [31] using the same 9-node compact stencil on the left-hand side, and a
sixth order compact scheme is built for the Helmholtz equation with a variable wavenumber k
in [32].

2.4 Boundary conditions for a square domain

In order to maintain high order accuracy, it is necessary that all boundary conditions be accurate
to the same order as the interior scheme, see [34].

2.4.1 Dirichlet boundary conditions

We first consider the variable coefficient Helmholtz equation with constant wavenumber k on a
square domain of side length s, Ω =

{
(x, y)| − s

2 < x < s
2 , −

s
2 < y < s

2

}
:

− ∂

∂x

(
a
∂u

∂x

)
− ∂

∂y

(
b
∂u

∂y

)
− k2u = −f, (x, y) ∈ Ω, (2.34)
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subject to the zero Dirichlet boundary condition:

u(x, y) = 0 when x = ±s
2

or y = ±s
2
. (2.35)

The assumption k = const is not necessary, and is introduced in equation (2.34) only for
convenience.

Discretization of the Dirichlet boundary condition (2.35) is completely straightforward. Con-
sider a Cartesian grid on the square Ω:{

(xm, yn)
∣∣∣m = −M

2
, . . . ,

M

2
, n = −M

2
, . . . ,

M

2

}
,

M = s/h, xm = m · h, yn = n · h.
(2.36)

Since the scheme (2.32) is built on a compact 3 × 3 stencil, it does not require any additional
“numerical” boundary conditions, and we simply discretize (2.35) as

um,n = 0 if m = ±M
2

or n = ±M
2
,

which is exact and therefore accurate to any order.
It is known, however, that when solving the Helmholtz equation on a bounded domain

subject to a Dirichlet boundary condition, resonances may occur. To avoid this undesirable
phenomenon, we employ additional considerations when choosing the wavenumber k. Let the
variable coefficients a = a(x, y) and b = b(x, y) in equation (2.34) be smooth and bounded on
Ω̄. In addition, we require that

ν
def= min

{
min

(x,y)∈Ω̄
a(x, y), min

(x,y)∈Ω̄
b(x, y)

}
> 0. (2.37)

Inequality (2.37) implies, in particular, that the operator

Lu ≡ − ∂

∂x

(
a
∂u

∂x

)
− ∂

∂y

(
b
∂u

∂y

)
, (2.38)

subject to the same Dirichlet boundary condition (2.35), is self-adjoint and positive definite on
the space W 2

2,0(Ω)2. To guarantee uniqueness of the solution u to problem (2.34) with boundary
condition (2.35), we must ensure that k2 is not an eigenvalue of the operator L of (2.38), (2.35).
This is done by estimating the smallest eigenvalue λmin of L, i.e., its eigenvalue closest to zero,

2This space is a completion in the norm W 2
2 (Ω) of the set of functions C2

0 (Ω̄) ⊂ C2(Ω̄) that are twice
continuously differentiable on Ω̄ and are equal to zero on ∂Ω. For self-adjointness on W 2

2,0(Ω), in addition to
(2.37) one also needs to require an upper bound on the coefficients a and b, and on absolute values of their first
derivatives, see [35, Sections 145, 148, 149].
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and then choosing k accordingly.
As shown in [35, Section 150], the following estimate holds for the smallest eigenvalue of L:

λmin ≥
ν

cΩ
,

where ν is defined in formula (2.37), and cΩ is the constant from the Friedrichs inequality,

∫∫
Ω

u2(x, y)dxdy ≤ cΩ

∫∫
Ω

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dxdy. (2.39)

When Ω is a square of side length s, it is easy to prove (see [36, Section 115]) that cΩ = s2 (the
area of the square) in inequality (2.39). Consequently,

λmin ≥
ν

s2
. (2.40)

Inequality (2.40) implies that choosing the wavenumber k so that

k2 <
ν

s2
(2.41)

is sufficient for avoiding the resonances (and thus having uniqueness), since then the sum
λmin − k2 will remain positive.

In fact, estimate (2.40) is conservative and can be sharpened. If, for example, L is the
negative Laplace operator so that a ≡ b ≡ 1 and ν = 1, then the first eigenfunction is
v = cos(πx/s) cos(πy/s) and the minimum eigenvalue is λmin = 2π2/s2. Hence, for practical
purposes we estimate the minimum eigenvalue of L by merely replacing the coefficients a and
b in (2.38) by their minimum value ν of (2.37). This leads to a weaker constraint on k instead
of (2.41):

k2 <
2π2ν

s2
. (2.42)

In the numerical experiments of Section 2.5.1, we make sure that inequality (2.42) holds. This
is a sufficient but not necessary condition for the uniqueness of a solution.

2.4.2 Local Sommerfeld-type boundary conditions

In order to test the performance of the scheme for larger values of k, the constraint given by
inequality (2.42) must be alleviated. A convenient way of doing that is to modify the boundary
condition so that the problem is no longer self-adjoint: its spectrum becomes complex, hence
no real value k2 ∈ R can be an eigenvalue.

In [34] (corrected in [37]) Erlangga and Turkel derived a fourth order accurate scheme for a
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simplified absorbing boundary condition:

∂u

∂x
+ iβu = 0.

Furthermore, they present computational evidence that if the interior scheme is fourth order
accurate but the absorbing boundary condition is only second order accurate, then the global
accuracy is second order.

Here, we set the local Sommerfeld-type boundary conditions on two opposite sides of the
square Ω:

∂u

∂x
+ iku = 0 if x =

s

2
, (2.43a)

∂u

∂x
− iku = 0 if x = −s

2
, (2.43b)

and keep a homogeneous Dirichlet boundary condition on the other pair of opposite sides:

u(x, y) = 0 if y = ±s
2
. (2.43c)

We emphasize that we do not intend to simulate the actual radiation of waves toward infinity
by means of boundary conditions (2.43a) and (2.43b). The problem is still solved on a bounded
region (a square), and our goal is rather to avoid the eigenvalues in the interior.

First, we again set the exact discrete Dirichlet BCs at the top and bottom edges of the
square:

um,n = 0 if n = ±M
2
. (2.44a)

Boundary conditions (2.43a) and (2.43b) are then approximated on the grid with fourth order
accuracy using compact differencing. For convenience, they are set at half-nodes:

ux
M− 1

2 ,n
+ ikuM− 1

2
,n =0, (2.44b)

ux 1
2 ,n
− iku 1

2
,n =0. (2.44c)

We will treat the left boundary of the square x = − s
2 , and the analogous case of the right

boundary x = s
2 will follow by symmetry. First, we approximate (2.44c) with second order

accuracy as follows:

ux 1
2 ,n
− iku 1

2
,n =

u1,n − u0,n

h
− (h/2)2

6
uxxx 1

2 ,n

− ik
u1,n + u0,n

2
+ ik

(h/2)2

2
uxx 1

2 ,n
+O(h4).

(2.45)
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In order to eliminate the O(h2) terms in (2.45), it is sufficient to approximate the derivatives
uxxx 1

2 ,n
and uxx 1

2 ,n
with second order accuracy. To do so on the compact stencil, we will use

the same difference formulae (2.27a) and (2.27b) obtained from the equation-based expressions
in Section 2.3. Taking into account that f(x, y) is compactly supported inside the square, we
can assume that near the boundary f ≡ 0. For the derivative uxx 1

2 ,n
, this yields:

uxx 1
2 ,n

=
1
a

(Fx − axux)
∣∣∣

1
2
,n

=
1

a 1
2
,n

(
− (k2u) 1

2
,n − by 1

2 ,n

u 1
2
,n+1 − u 1

2
,n−1

h

− b 1
2
,n

u 1
2
,n+1 − 2u 1

2
,n + u 1

2
,n−1

(h/2)2
− ax 1

2 ,n

u1,n − u0,n

h

)
+O(h2).

(2.46)

Similarly, for uxxx 1
2 ,n

we obtain:

uxxx 1
2 ,n

=
1
a

(
∂Fx
∂x
− axxux −

2ax
a

(Fx − axux)
) ∣∣∣∣∣

1
2
,n

=
1

a 1
2
,n

(
−

[
bxy 1

2 ,n

h
(u 1

2
,n+1 − u 1

2
,n−1)

+
by 1

2 ,n

4(h/2)2
(u1,n+1 − u0,n+1 − u1,n−1 + u0,n−1)

+
bx 1

2 ,n

(h/2)2
(u 1

2
,n+1 + u 1

2
,n−1 − 2u 1

2
,n) (2.47)

+
b 1

2
,n

2(h/2)3
(u1,n+1 − u0,n+1 + u1,n−1 − u0,n−1

−2(u1,n − u0,n)) +
(k2u)1,n − (k2u)0,n

h

]

− axx 1
2 ,n

u1,n − u0,n

h
−

2ax 1
2 ,n

a 1
2
,n

(
− (k2u) 1

2
,n − by 1

2 ,n

u 1
2
,n+1 − u 1

2
,n−1

h

− b 1
2
,n

u 1
2
,n+1 − 2u 1

2
,n + u 1

2
,n−1

(h/2)2
− ax 1

2 ,n

u1,n − u0,n

h

)
+O(h2).

Formulae (2.46) and (2.47) still contain the values of u at semi-integer grid locations. To
have a scheme that would only operate with full-node values, we replace u 1

2
,n by the second

order approximation u 1
2
,n ≈

u1,n+u0,n

2 , and proceed similarly for the terms u 1
2
,n+1, u 1

2
,n−1,

and (k2u) 1
2
,n. Using this modification, we obtain a fourth order accurate approximation of the
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boundary condition (2.43b) in the form(
u1,n − u0,n

h
− h2

24
uxxx 1

2 ,n

)
− ik

(
u1,n + u0,n

2
− h2

8
uxx 1

2 ,n

)
= 0, (2.48)

where the terms uxx 1
2 ,n

and uxxx 1
2 ,n

are evaluated according to (2.46) and (2.47), respectively.
Similarly, the boundary condition (2.43a) is approximated as(

uM,n − uM−1,n

h
− h2

24
uxxx

M− 1
2 ,n

)
+ ik

(
uM,n + uM−1,n

2
− h2

8
uxx

M− 1
2 ,n

)
= 0, (2.49)

where the terms uxx
M− 1

2 ,n
and uxxx

M− 1
2 ,n

are evaluated according to the analogues of (2.46)
and (2.47), respectively.

For the case of the constant-coefficient Helmholtz equation dealt with in Chapters 3 and
4, the fourth-order formulae for the Sommerfeld BC (2.44) with the discrete representations
(2.46-2.47) for the derivatives simplify as follows:(

uM,n − uM−1,n

h
− 1

6h
(uM,n+1 − uM−1,n+1 + uM,n−1 − uM−1,n−1 − 2(uM,n − uM−1,n)

−k
2h

24
(uM,n − uM−1,n)

)
+ ik

(
uM,n + uM−1,n

2
+
h2k2

8
uM− 1

2
,n

+
uM− 1

2
,n+1 − 2uM− 1

2
,n−1 + uM− 1

2
,n−1

2

)
= 0,

(2.50a)

(
u1,n − u0,n

h
− 1

6h
(u1,n+1 − u0,n+1 + u1,n−1 − u0,n−1 − 2(u1,n − u0,n)

−k
2h

24
(u1,n − u0,n)

)
− ik

(
u1,n + u0,n

2
+
h2k2

8
u 1

2
,n +

u 1
2
,n+1 − 2u 1

2
,n−1 + u 1

2
,n−1

2

)
= 0.

(2.50b)

2.5 Numerical verification of the Cartesian scheme

To achieve the desired fourth order of accuracy in our compact finite difference approximation,
the test solutions u = u(x, y) for equation (2.34) must be at least 6 times continuously differen-
tiable. Additionally, to satisfy the boundary condition (2.35) or boundary conditions (2.43), it is
also convenient to choose the solution to be compactly supported inside the square D. We have
found it easiest to devise such test solutions using polar coordinates, and we then convert back
to Cartesian coordinates for actual computations. Specifically, we take a smooth and compactly
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supported function of r and multiply it by a smooth 2π periodic function of θ for generality.
In doing so, to guarantee regularity at r = 0, we additionally require that the function of r be
equal to zero at the origin along with sufficiently many of its derivatives. Then, we substitute
the resulting u(r, θ) = u(

√
x2 + y2, arctan(y/x)) into the left-hand side of equation (2.34) and

derive the right-hand side f = f(x, y), which is subsequently used in the scheme.
Our implementation was written in MATLAB, and the linear system obtained from our

scheme is solved via MATLAB’s built-in direct sparse solver. The computations were performed
on a 2.16 GHz Intel Core 2 Duo MacBook Pro with 2 Gb of RAM running on Mac OS X.

The results in the following examples demonstrate fourth order convergence with respect to
the grid size, and a somewhat faster than linear growth of the time required to compute the
solution.

2.5.1 Dirichlet boundary condition

Example 1

For our first example, we use a test solution u, based on a trigonometric function of r, and
coefficients a and b as follows:

u(x, y) =

sin6(2r) cos(θ), r < π
2

0, r > π
2

=

sin6(2
√
x2 + y2) cos(arctan(y/x)), r < π

2

0, r > π
2

,

a(x, y) =1 + e−x
2−y2

,

b(x, y) =1 +
x2 + y2

1 + x2 + y2
.

The domain in this case is a square of side length s = π centered at the origin. The value of k
was chosen to be k = 1. Note that in this case

ν = min
(x,y)∈D̄

{a(x, y), b(x, y)} = min{1 + e−2π2
, 1 + 0} = 1,

and thus we see that (2.42) is satisfied since

k2 = 1 < 2 =
2π2

π2
=

2π2ν

s2
.

Table 2.1 compares the error of the numerical and exact solutions on a series of grids of step-
sizes h given in the leftmost column. From column 3 we clearly see the fourth order convergence.
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Column 5 indicates that computational complexity of the direct solver scales somewhat faster
than linear as the grid dimension increases.

Table 2.1: Grid convergence and computation time data for example 1.

h ||u− unum||∞ Convergence Rate Time Time Scaling

1/4 3.63 · 10−2 - 3.42 · 10−3 -

1/8 1.82 · 10−3 4.47 1.50 · 10−2 4.38

1/16 1.10 · 10−4 4.07 6.65 · 10−2 4.44

1/32 6.79 · 10−6 4.02 .31 4.64

1/64 4.22 · 10−7 4.01 1.54 4.98

1/128 2.64 · 10−8 4.00 8.71 5.67

Example 2

In this example, we use a test solution u which is derived from a polynomial in r, with a and b
as follows:

u(x, y) =

r6(1− r2)6 sin(θ), r < 1

0, r > 1

=

(x2 + y2)3(1− x2 − y2)6 sin(arctan(y/x)), r < 1

0, r > 1
,

a(x, y) =1 +
arctan(xy)

2π
,

b(x, y) =1 +
x2 + y2

1 + x2 + y2
.

Note that a is an asymmetric function of x and y, whereas both a and b were radially symmetric
in the first example. The domain is a square of side length s = 2, centered at the origin. We
choose k = 1, and so (2.42) is satisfied since

ν = min
(x,y)∈D̄

{a(x, y), b(x, y)} = min{1 +
arctan(−1)

2π
, 1 + 0} =

7
8

24



and

k2 = 1 <
14π2

32
=

2π2ν

s2
.

The computational results are summarized in Table 2.2. Column 3 clearly shows the fourth
order convergence.

Table 2.2: Grid convergence and computation time data for example 2.

h ||u− unum||∞ Convergence Rate Time(s) Time Scaling

1/4 1.48 · 10−3 - 1.02 · 10−3 -

1/8 6.03 · 10−5 4.96 4.88 · 10−3 4.77

1/16 2.27 · 10−6 5.16 2.10 · 10−2 4.30

1/32 1.24 · 10−7 4.28 0.11 5.05

1/64 7.42 · 10−9 4.09 0.56 5.30

1/128 4.63 · 10−10 4.00 3.23 5.76

Example 3

We now use a test solution u which includes an exponential function in r:

u(x, y) =

(1− r2)6(1− e−r2
)6 sin(cos(θ)), r < 1

0, r > 1

=

(1− x2 − y2)6(1− e−x2−y2
)6 sin(cos(arctan(y/x))), r < 1

0, r > 1
,

a(x, y) =1 +
arctan(x+ y)

2π
,

b(x, y) =1 +
e−x

2−y2

1 + e−x2−y2 .

The domain is a square of side length s = 2 centered at the origin. We choose k = 1 and
verify that (2.42) is satisfied:

ν = min
(x,y)∈D̄

{a(x, y), b(x, y)} = min{1 +
arctan(−2)

2π
, 1} ≈ 0.8238.
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We can then compute the bound in (2.42) to be approximately 3.3489, and with our choice of
k=1 we indeed see that (2.42) is satisfied. Table 2.3 summarizes the numerical results. As before
column 3 demonstrates the fourth order convergence, and column 5 shows that computational
complexity scales faster than linear as the grid dimension increases.

Table 2.3: Grid convergence and computation time data for example 3.

h ||u− unum||∞ Convergence Rate Time(s) Time Scaling
1/4 5.13 · 10−5 - 1.30 · 10−3 -
1/8 2.71 · 10−6 4.36 4.94 · 10−3 3.79
1/16 1.07 · 10−7 5.03 2.06 · 10−2 4.18
1/32 5.43 · 10−9 4.43 0.11 5.24
1/64 3.25 · 10−10 4.09 0.56 5.14
1/128 2.016 · 10−11 4.01 3.24 5.82

2.5.2 Local Sommerfeld-type boundary conditions

To demonstrate the effectiveness of using the Sommerfeld-type boundary condition to eliminate
resonances, we now let k = 20 in each of the three previous examples of Section 2.5.1, and use
the Sommerfeld-type boundary conditions (2.43) instead of the Dirichlet boundary condition
(2.35). In all of the following examples, we take a square domain of side length s = 4.

Example 4

Table 2.4: Grid convergence and computation time data for example 4.

h ||u− unum||∞ Convergence Rate Time(s) Time Scaling

1/8 2.01 · 10−3 - 3.41 · 10−2 -

1/16 1.07 · 10−4 4.34 0.19 5.69

1/32 6.35 · 10−6 4.10 1.07 5.51

1/64 4.01 · 10−7 3.98 7.20 6.74

1/128 2.51 · 10−8 4.00 48.74 6.77
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Example 5

Table 2.5: Grid convergence and computation time data for example 5.

h ||u− unum||∞ Convergence Rate Time(s) Time Scaling

1/8 4.69 · 10−4 - 2.94 · 10−2 -

1/16 1.54 · 10−5 5.52 0.20 6.80

1/32 8.98 · 10−7 4.14 1.15 5.77

1/64 4.84 · 10−8 4.31 8.39 7.27

1/128 2.71 · 10−9 4.23 53.00 6.31

Example 6

Table 2.6: Grid convergence and computation time data for example 6.

h ||u− unum||∞ Convergence Rate Time(s) Time Scaling

1/8 1.63 · 10−5 - 3.49 · 10−2 -

1/16 3.77 · 10−7 6.57 0.22 6.20

1/32 2.35 · 10−8 4.00 1.21 5.58

1/64 1.45 · 10−9 4.02 7.50 6.21

1/128 8.92 · 10−11 4.03 59.10 7.88

2.6 Auxiliary problems for the method of difference potentials

In this chapter, we have demonstrated the equation-based approach for building high-order
FD schemes in 1D and 2D. While schemes for the Helmholtz equation in polar coordinates in
both one and two dimensions were derived, the remaining chapters will make use only of the
Cartesian scheme (2.33) of Section 2.3, even though the domain used in those chapters is a
disk centered at the origin. This will demonstrate that the method of difference potentials in
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Chapter 3 allows us to apply this Cartesian scheme on domains for which the boundary curve
is not aligned with the grid without any loss of accuracy. As such, one and the same Cartesian
finite difference scheme can be used for a variety of nonconforming boundary shapes.

In order to apply the method of difference potentials, we will embed the domain Ω in a larger
domain Ω0. The larger domain Ω0 will be used to formulate what is known as the auxiliary
problem (AP). When formulating the AP, the only essential requirement is the existence and
uniqueness of its solution on Ω0 for any right-hand side g, and, of course, well-posedness (i.e.,
the continuous dependence of the solution on the data). Otherwise, the choice of AP will not
affect the solution that we ultimately obtain inside Ω. It is to our advantage then to formulate
an AP that is easily solvable, and this is precisely the motivation behind our choice of the
square domain, as well as of the boundary conditions in (2.43). Moreover, this explains why
we have concerned ourselves in this chapter with only problems that have their support on
the interior of the square domain (which permits us to implement the Sommerfeld-type BC to
avoid resonances3), since the domain of interest, Ω, will be strictly in the interior of the square
auxiliary domain Ω0 with side-length s. Altogether, the continuous AP is given by:

Lu = g, x ∈ Ω0,

u = 0, y = ± s

2
,

∂u

∂x
± iku = 0, x = ± s

2
,

(2.51)

where the right-hand side g is an auxiliary right-hand side that results from the method of
difference potentials rather than the physical source term of the problem.

Indeed, the AP (2.51) can be solved efficiently by means of the separation of variables4. As
pointed out in Section 2.4.2, it is known that the Helmholtz equation is prone to resonances if
only Dirichlet boundary conditions are used,5 whereas the Sommerfeld-type conditions of (2.51)
make the spectrum complex and hence guarantee uniqueness of the solution to the AP. The
disadvantage of using Sommerfeld type conditions is that they introduce complex quantities
into the calculation, which is not always necessary for interior problems (unlike for the exterior
problems). Alternatively, one could use a Dirichlet or real Robin condition that was carefully
chosen to avoid zero (or very small) eigenvalues and would keep the solution real, and this
approach was adopted for some of the computations in [18].

3If, however, one is interested in solving problems on rectangular domains with other boundary conditions
than we have described, then Section 2.4.2 serves as an example of how to use the equation-based approach to
build high order approximations to the BCs on the compact stencil.

4Separation of variables can only be done in the case of the constant-coefficient Helmholtz equation, which
we use throughout Chapters 3 and 4. In the special case that a = a(x) and b = b(y) separation of variables may
also be used, but an LU-solver is employed for more general variable-coefficient equations.

5The Helmholtz equation is said to be at a resonance on Ω0 if −k2 is an eigenvalue of the Laplacian subject
to zero boundary conditions at ∂Ω0. In this case, the solution to the Helmholtz equation is not unique.
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To form the discrete problem, we apply the compact scheme (2.33) to the differential equa-
tion Lu = g of (2.51):

1
h2

(um+1,n + um,n+1 + um−1,n + um,n−1 − 4um,n)

+
1

6h2
[um+1,n+1 + um+1,n−1 + um−1,n+1 − um−1,n−1 + 4um,n

−2(um,n+1 + um,n−1 + um+1,n + um−1,n)]

+
k2

12
(um+1,n + um,n+1 + 8um,n + um−1,n + um,n−1) = g(h)

m,n,

(2.52)

where we can formally think that [cf. formula (2.33)]

g(h)
m,n = gm,n +

1
12

(gm+1,n + gm,n+1 − 4gm,n + gm−1,n + gm,n−1) .

We emphasize, however, that the right-hand side g in (2.51) plays only an auxiliary role: it will
be present even if the the governing equation is homogeneous, and even in the inhomogeneous
case g is related but not identical to the source term of the PDE. As such, in our subsequent
analysis the explicit form of gm,n will never be needed. What will rather be important for
constructing the difference potentials and projections is the final discrete right-hand side g(h)

m,n

of equation (2.52). This right-hand side g(h) will be obtained directly, i.e., without having to
relate it to any g from the continuous AP (2.51) by means of the five-node stencil. The auxiliary
right-hand side g(h) will be specified in Chapter 3 by the definition of the difference potential
(3.2). We also note that even though we keep the right-hand side g(h) as a key innate element of
the method of difference potentials, the actual physical solutions that we obtain inside Ω in the
form of difference potentials will be those to the finite difference equation (2.33). Additionally,
the BCs of (2.51) are discretized according to (2.44) with the fourth-order approximations
(2.50) for the Sommerfeld-type BCs for the constant-coefficient Helmholtz equation.

As in the case of the continuous AP (2.51), the overall discrete AP (2.52) is supposed to
have a unique solution um,n, m = 0, . . . ,M , n = 0, . . . , N , for any right-hand side gm,n (defined
on the interior sub-grid m = 1, . . . ,M − 1, n = 1, . . . , N − 1), and be well-posed. For the
constant-coefficient Helmholtz equation, the discrete AP (2.52) can be solved by a sine FFT in
the y-direction combined with the tri-diagonal elimination in the x-direction. The complexity
of this solution is log-linear with respect to the grid dimension N , and linear with respect to
M (note here that we have chosen a square domain, and, consequently, M = N).

In this way, the Cartesian scheme obtained in Section 2.3 with the boundary conditions
(2.43) will be used to solve the auxiliary problem in the method of difference potentials in
Chapters 3 and 4. Ultimately, this will yield the solution to the Helmholtz equation on a non-
Cartesian domain Ω without the usually associated loss of accuracy due to staircasing.
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Chapter 3

Difference Potentials

In this chapter, we introduce the method of difference potentials and present a numerical
approach for its universal treatment of boundary conditions [25]. In Section 3.1 we discuss dif-
ference potentials and projections, which can be considered as generalized discrete counterparts
of Calderon’s potentials and projections [6, 7]. We show how the finite difference equations on
the domain of interest can be reduced to equivalent discrete equations at the boundary after en-
capsulating it in a larger auxiliary domain. Our main objective is to demonstrate the versatility
of the proposed algorithm in treating boundary conditions. Hence, we consider a computational
setting which is otherwise very straightforward. Specifically, we use the fourth-order accurate
compact scheme of Section 2.3 to solve the inhomogeneous interior problem for the Helmholtz
equation (1.1) on a uniform Cartesian grid in two space dimensions. Moreover, we simplify the
FD scheme to the case of constant coefficients. For the preliminary presentation of the method,
the computational domain is chosen as a disk — the simplest non-conforming shape for our
Cartesian finite difference grid. We emphasize that these restrictions are not limitations of our
approach, and this is done only to isolate the discussion of complicated boundary conditions in
an otherwise simple setting.

In Section 3.2, we provide a detailed account of how various types of boundary conditions
can be accommodated by the method of difference potentials. We illustrate the generality of this
approach by analyzing specific examples: Robin boundary conditions with variable coefficients
and mixed Dirichlet/Neumann boundary conditions. We identify those parts of the overall
numerical algorithm that need to be adjusted when changing the boundary conditions and
show that only minor changes are needed in the algorithm to accommodate changes in the
boundary condition.

In Section 3.3, we present the results of the numerical experiments. Our simulations cor-
roborate the theoretical design properties of the algorithm. Specifically, when the solution is
sufficiently smooth, the algorithm demonstrates fourth-order grid convergence. We also offer
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simulations to demonstrate that the grid convergence predictably slows down when the solution
lacks regularity due to singularities in the boundary data. Restoring the design convergence rate
when the solution has singularities at the boundary is the topic of Chapter 4. Additionally, we
show that boundary value problems with the same domain but different boundary conditions
or a different inhomogeneous source term can be solved very efficiently with no special changes
required in the algorithm.

3.1 Difference potentials and projections

Let Ω be a bounded domain on the Cartesian plane R2, and let Γ be its boundary, Γ = ∂Ω.
Consider the following boundary value problem:

Lu
def= ∆u+ k2u = f, x ∈ Ω, (3.1a)

lΓu = φΓ, (3.1b)

where k = const in equation (3.1a). Problem (3.1) is required to be well-posed, having a unique
solution u on Ω for a given φΓ. We discretize problem (3.1) on a Cartesian grid and solve it with
high-order accuracy using the method of difference potentials for the case where Ω is a disk
of radius r= 1 centered at the origin and Γ is a circle. Note that (3.1b) is a generic boundary
condition that will be specified later. The method allows for a broad variety of boundary
conditions (3.1b) which will be explored in Section 3.2. Throughout the presentation of the
method, the source term f of (3.1a) is always decoupled from the expressions resulting from
the differential operator, allowing different source terms or homogeneous problems to be treated
with ease.

3.1.1 The finite difference scheme and auxiliary problem

The method of difference potentials can be applied in conjunction with any finite difference
scheme. A key advantage of high-order schemes is their improved efficiency in reducing the
phase error, see Section 1. Hereafter, we restrict the discussion to the constant coefficient case,
since our focus is on the treatment of the boundary conditions. In the case of constant coefficients
or even a variable wavenumber, a sixth order accurate FD scheme is possible [31, 32], but we
have chosen to implement the fourth-order accurate approximation (2.33) of Section 2.3 for the
inhomogeneous constant-coefficient Helmholtz equation (3.1a).

In order to apply the method of difference potentials, we formulate an auxiliary problem on
a larger square domain Ω0 which includes Ω (i.e., the unit disk) as described in Section 2.6. For
the disk of radius 1 centered at the origin, we choose Ω0 to be a square of side length s = 2.2 (also
centered at the origin). The continuous AP is posed as (2.51) with zero Dirichlet BCs on the top
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and bottom edges of the square and Sommerfeld-type BCs on the left and right edges to avoid
resonances of the Helmholtz equation. The discrete AP subject to the finite difference scheme
(2.33) for the constant-coefficient Helmholtz equation is given by (2.52), with the discrete BCs
given in (2.44) computed by the formulae (2.50). This discrete auxiliary problem can be solved
efficiently (see the concluding remarks of Section 2.6). The method of difference potentials
will require that we solve several such APs for a single problem, as will be made clear in the
forthcoming sections.

We now consider a Cartesian grid on the square auxiliary domain in the next section. We
will define various grid sets that are useful for building the discrete operators of the method of
difference potentials.

3.1.2 Grid sets and operators

Grid subsets Let N0 be a uniform Cartesian grid on the square Ω0 with step size h in both
the x- and y-directions, and let M0 ⊂ N0 be the set of its interior nodes, i.e., all nodes of N0

except those on the edges of Ω0. The solution u to the discrete auxiliary problem (2.52) will be
defined on the grid N0, while its right-hand side g(h) will be defined on the grid M0.

��������
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Figure 3.1: Interior and exterior grid subsets and the grid boundary.

Let M+ ⊂ M0 be the set of nodes of M0 that are inside the physical domain Ω, i.e.,
M+ = M0 ∩ Ω, see the red nodes of Figure 3.1. Since Γ = ∂Ω is not aligned with the grid, we
define its discrete analogue, γ, which we refer to as the grid boundary. Let M− be the set of all
nodes of M0 that lie outside Ω, i.e., M− = M0\M+, see the blue nodes of Figure 3.1. Let N+

and N− be defined as the sets of nodes of N0 that are used when applying the 3 × 3 compact
stencil (see Figure 2.1) to the nodes of M+ and M−, respectively. In Figure 3.1, N+ consists of
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the red plus yellow nodes, while N− is denoted by the blue plus yellow nodes. By design, there
will be an overlap in the sets N+ and N− when applying the stencil to nodes of M+ and M−

which are adjacent to Γ, and we refer to this overlap, i.e., the intersection of these sets, as the
grid boundary, γ = N+ ∩ N−, see the yellow nodes of Figure 3.1.

Difference potentials The solution of the discrete AP (2.52) plays a key role in the con-
struction of the difference potentials and projections, which can be considered as discrete
counterparts of Calderon’s potentials and boundary projections (pseudo-differential operators),
see [6,7,8]. The difference potential will approximate the solution u of boundary value problem
(3.1) on the grid N+. The density of the difference potential is a grid function defined on the
grid boundary γ. It satisfies a special system of linear algebraic equations called the boundary
equation with projection (BEP).

We denote the discrete operator on the left-hand side of equation (2.52) by L(h). Let us
first discuss the operators for the homogeneous Helmholtz equation with f = 0. Then the
discrete AP (2.52) consists of solving the finite difference equation L(h)u = g(h) on the grid
N0, subject to boundary conditions (2.44) computed by formulae (2.50a) and (2.50b). Define
the corresponding inverse operator G(h) as the solution of the discrete AP (2.52), so that
u = G(h)g(h). Also consider a grid function ξγ specified on the discrete boundary γ, Figure 3.1.
The difference potential with density ξγ is given by

PN+ξγ
def= w −G(h)

(
L(h)w

∣∣
M+

)
︸ ︷︷ ︸

g(h)

, where w =

ξγ on γ,

0 on N0\γ.
(3.2)

The operation L(h)w
∣∣
M+ := g(h) in formula (3.2) denotes first the application of the operator

L(h) to the auxiliary function w and then truncation of the grid function L(h)w to the grid
M+, see Figure 3.1. Note also that g(h) := L(h)w

∣∣
M+ is the directly obtained right-hand side

of the discrete AP (2.52). As mentioned there is no explicit function g from the definition of
the continuous AP (2.51) to which we apply the 5-node stencil implied by the finite difference
scheme (2.33). The difference potential PN+ξγ is defined on the grid N+ (that’s why we are
using the subscript “N+”),1 and at the nodes M+ it satisfies the finite difference equation [cf.
formula (2.33)]

L(h)(PN+ξγ) = 0.

Along with the grid function ξγ , consider a two-component vector function ξξξΓ = (ξ0, ξ1)

1Even though both the auxiliary function w and the solution G(h)g to the discrete AP (2.52) are defined on
the entire grid N0, the difference potential PN+ξγ as introduced by formula (3.2) is of interest only on the grid
N+.
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defined on the continuous boundary Γ. ξξξΓ can be used as the density of the genuine Calderon
potential of the differential operator L on the domain Ω [6,7], in which ξ0 is interpreted as the
Dirichlet data and ξ1 is interpreted as the Neumann data at the boundary Γ. Provided that
the grid function ξγ is related to the continuous function ξξξΓ in some special sense (ξγ must be
obtained from ξξξΓ as an equation-based extension based on the Taylor formula of order four,
see Section 3.2), the difference potential (3.2) approximates the continuous Calderon potential
with density ξξξΓ with fourth-order accuracy on the grid N+ (the design accuracy of our compact
scheme), see [8, 38,18].

Truncating the difference potential (3.2) to γ, we obtain the difference projection:

Pγξγ
def= (PN+ξγ)

∣∣
γ
, (3.3)

and then express the discrete BEP for the homogeneous problem as:

Pγξγ = ξγ . (3.4)

Its pivotal property (see [8]) is that a grid function ξγ satisfies the BEP (3.4) if and only if
it can be obtained as the truncation to γ of a solution u [defined on N+, Figure 3.1] of the
homogeneous difference equation (2.33) with f = 0: L(h)u = 0. Thus, the BEP (3.4) provides
an equivalent reduction of the discrete equation L(h)u = 0 from the grid domain N+ to the grid
boundary γ. If the grid function u satisfies L(h)u = 0, then its truncation ξγ = u|γ must satisfy
the BEP (3.4). Conversely, if the grid function ξγ satisfies the BEP (3.4), then there exists a
function u defined on N+ such that L(h)u = 0 and u|γ = ξγ . In fact, this u is given by the
difference potential (3.2): u = PN+ξγ .

In Chapter 4, we will need the ability to solve inhomogeneous problems since singular
problems, even when homogeneous, require the solution of an inhomogeneous “regularized”
problem when using the method of singularity subtraction presented there. When the Helmholtz
equation (1.1) is inhomogeneous (i.e., the right-hand side f is nonzero), the BEP (3.4) also
becomes inhomogeneous:

Pγξγ + TrγG
(h)B (h)f (h) = ξγ . (3.5)

The function f (h) is equal to the right-hand side f on the interior nodes of the discrete domain
(since f is only defined inside of the given domain) and is equal to zero on the exterior nodes (see
Figure 3.1). B (h) denotes the 5-node stencil operator of the finite difference scheme (2.33), and
the operator TrγG

(h)B (h)f (h) represents the trace on the grid boundary γ of a grid function
G(h)B (h)f (h) defined on N0. The extension f (h) of f is necessary since the operator G(h) is
defined by the auxiliary problem and operates on the entire auxiliary domain. Consequently,
the difference potential from which we obtain the solution now also contains an inhomogeneous
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term:
u = PN+ξγ + G(h)B (h)f (h). (3.6)

Note that the difference potential (3.2) and, consequently, the projection (3.3) depends on
the choice of the AP since changing the AP will change the inverse operator G(h). However,
the change of the AP does not affect the range of the projection Pγ , i.e., it does not change
the set of solutions to the BEP (3.4), as long as the AP remains uniquely solvable. In other
words, when changing the AP one only induces a different projection onto the same subspace
of solutions, see [8].

3.2 Treatment of the boundary conditions

In this section, we show how to account for the given boundary condition (3.1b) in order to
approximately reconstruct the data

(
u, ∂u∂n

) ∣∣
Γ

of the solution u to problem (3.1) at the boundary
Γ, and subsequently obtain the discrete solution of (3.1) on the grid N+ in the form of the
difference potential (3.2). It is from the treatment of the BCs by a truncated series expansion in
Section 3.2.2 that the need for solving several APs (2.52) will arise. First, we need to build the
equation-based extension of an arbitrary pair of functions, ξξξΓ = (ξ0, ξ1)

∣∣
Γ
, from the continuous

boundary Γ to the grid boundary γ in order to apply the discrete operators of Section 3.1.2.

3.2.1 Equation-based extension to the grid boundary

The extension of a given ξξξΓ = (ξ0, ξ1)
∣∣
Γ

from the smooth boundary Γ to the grid nodes γ
(specifically the nodes adjacent to Γ, see Figure 3.1) is constructed using a truncated Taylor
expansion with differentiation in the direction normal to Γ. Consider ξξξΓ as the data of some
function v = v(x, y),

(ξ0, ξ1)
∣∣
Γ

=
(
v,
∂v

∂n

) ∣∣∣∣
Γ

,

and we define the function v near the curve Γ by means of the Taylor expansion:

v
def= vΓ + ρ

∂v

∂n

∣∣∣∣
Γ

+
ρ2

2
∂2v

∂n2

∣∣∣∣
Γ

+
ρ3

6
∂3v

∂n3

∣∣∣∣
Γ

+
ρ4

24
∂4v

∂n4

∣∣∣∣
Γ

. (3.7)

In formula (3.7), ρ denotes the distance (with sign) from a given point near Γ to the curve
Γ. We emphasize that while formula (3.7) takes the usual form of a Taylor approximation to
the function v, it should not be interpreted this way. Instead, it should be thought of as the
definition of v. The new function v can be evaluated at any point (x, y) which is sufficiently
close to Γ. In particular, we call this new function ξγ when its domain is restricted to the nodes
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of the grid boundary γ, see Figure 3.1:

ξγ
def= v

∣∣
γ
. (3.8)

However, the foregoing definition is not complete until we specify how to compute the
normal derivatives of order 2 and higher required for formula (3.7). These will be obtained using
equation-based differentiation applied to the homogeneous Helmholtz equation with constant
coefficients, (3.1a) with f = 0. It will be convenient to treat the homogeneous case first, since
we will compute the homogeneous and inhomogeneous components of the extension separately.
The inhomogeneous term will be obtained by the separating out the right-hand side f and its
derivatives from the same process which we now apply to the homogeneous equation.

First, we assume that the “input” functions v and ∂v
∂n are known analytically on the circle Γ

so that we can readily compute their tangential derivatives. Since we consider the simple case of
a circular boundary Γ centered at the origin, the outward normal to Γ and the direction of the
polar radius coincide. Hence, it is convenient to recast equation (3.1a) using polar coordinates
(r, θ):

1
r

∂v

∂r
+
∂2v

∂r2
+

1
r2

∂2v

∂θ2
+ k2v = 0. (3.9)

Equation (3.9) allows us to obtain the second derivative of v with respect to r:

∂2v

∂r2
= −

(
1
r

∂v

∂r
+

1
r2

∂2v

∂θ2
+ k2v

)
. (3.10)

Recall that v and ∂v
∂n = ∂v

∂r are given on Γ, and that ∂2v
∂θ2 can be computed analytically as the

second tangential derivative of the given function v. Hence, (3.10) allows us to compute the
term ∂2v

∂n2 = ∂2v
∂r2 in the Taylor expansion (3.7).

We proceed to find the remaining normal derivatives, ∂3v
∂n3 = ∂3v

∂r3 and ∂4v
∂n4 = ∂4v

∂r4 , via
equation-based differentiation2. In particular, we take the derivative of (3.10) with respect
to r to obtain:

∂3v

∂r3
=

1
r2

∂v

∂r
− 1
r

∂2v

∂r2
+

2
r3

∂2v

∂θ2
− 1
r2

∂3v

∂r∂θ2
− k2∂v

∂r
. (3.11)

We are able to evaluate ∂3v
∂r3 using the given function ∂v

∂r , the analytically computed second
tangential derivative of ∂v

∂r for ∂3v
∂r∂θ2 , and the representation (3.10) for ∂2v

∂r2 . This way, we can
compute the third normal derivative term of the Taylor expansion (3.7). To compute the next

2This is the same method by which we obtained alternate representations of the truncation terms for finite
difference schemes in Chapter 2.
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term, we differentiate equation (3.11) with respect to r:

∂4v

∂r4
= − 2

r3

∂v

∂r
+

2
r2

∂2v

∂r2
− 1
r

∂3v

∂r3
− 6
r4

∂2v

∂θ2
+

4
r3

∂3v

∂r∂θ2
− 1
r2

∂4v

∂r2∂θ2
− k2∂

2v

∂r2
. (3.12)

Again, the term ∂v
∂r is given, the terms ∂2v

∂r2 and ∂3v
∂r3 are evaluated via (3.10) and (3.11), re-

spectively, and the terms ∂2v
∂θ2 and ∂3v

∂r∂θ2 are computed analytically as the tangential derivatives
of the given pair of functions

(
v, ∂v∂r

)
. The only remaining term of (3.12) that has not been

accounted for yet is ∂4v
∂r2∂θ2 . We evaluate it by differentiating equation (3.10) twice with respect

to θ:
∂4v

∂r2∂θ2
= −

(
1
r

∂3v

∂r∂θ2
+

1
r2

∂4v

∂θ4
+ k2∂

2v

∂θ2

)
. (3.13)

Note that all of the terms required to compute ∂4v
∂r2∂θ2 by (3.13) are tangential (i.e., angular)

derivatives of v and ∂v
∂r . Therefore, substituting (3.13) for ∂4v

∂r2∂θ2 into (3.12) completes our ability
to calculate the fourth normal derivative ∂4v

∂r4 = ∂4v
∂n4 in the Taylor expansion (3.7).

Thus, given an arbitrary pair of functions
(
v, ∂v∂r

)
defined along the circle Γ, a fifth-order

extension from the continuous circle to a nearby grid node along the normal direction is accom-
plished by substituting equations (3.10–3.13) into the Taylor expansion (3.7). In [18, Appendix
A], a similar extension is built in the case of an arbitrary smooth curve Γ.

Hereafter, we use the notation Ex for the equation-based extension operator defined by
formulae (3.7-3.8). It will act on an arbitrary pair of continuous functions defined on Γ: ξξξΓ =
(ξ0, ξ1)|Γ. This operator uses the truncated Taylor expansion (3.7) to construct a new function
v(x, y) near Γ, which is then sampled at the grid boundary γ according to (3.8). This yields the
grid function that we refer to as ξγ :

ξγ = ExξξξΓ = Ex (ξ0, ξ1)
∣∣
Γ
.

We emphasize that while the normal derivatives of order two and higher in formula (3.7) are
obtained by differentiation based on the Helmholtz equation (3.1a), the construction of the
operator Ex permits it to be applied to an arbitrary pair of functions. Thus, ξξξΓ does not
need to represent the data of a solution to equation (3.1a) in order to apply the operator.
However, if ξξξΓ happens to be the data of a solution u to equation (3.1a) on Ω, then formula
(3.7) approximates this solution near Γ = ∂Ω with fifth-order accuracy with respect to n, and,
in particular, it shall do so at the nodes of the discrete boundary γ.

When the Helmholtz equation is inhomogeneous, which is unavoidable for problems with
boundary singularities (see Chapter 4), this extension process requires some modification. In
particular, the right-hand side of (3.9) becomes f rather than zero, and its differentiation must
be carried through in the subsequent derivations (3.10–3.13). It is convenient to separate out the
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contribution of the right-hand side f of (3.9) in the inhomogeneous case as it applies to formula
(3.7), which equivalently amounts to decoupling expressions (3.10–3.13) into the homogeneous
part and inhomogeneous part. In doing so, the Taylor expansion (3.7) is decomposed into the
homogeneous and inhomogeneous contribution as follows:

v = vΓ + ρ
∂v

∂r

∣∣∣∣
Γ

+
ρ2

2
∂2v

∂r2

∣∣∣∣
Γ

+
ρ3

6
∂3v

∂r3

∣∣∣∣
Γ

+
ρ4

24
∂4v

∂r4

∣∣∣∣
Γ︸ ︷︷ ︸

homogeneous

+
ρ2

2
f +

ρ3

6

(
∂f

∂r
− 1
r
f

)
+
ρ4

24

(
∂2f

∂r2
− 1
r2

∂2f

∂θ2
− 1
r

∂f

∂r
− k2f +

3
r2
f

)
︸ ︷︷ ︸

inhomogeneous

.

(3.14)

The derivatives of v with respect to. r in formula (3.14) are computed according to the homo-
geneous expressions of (3.10–3.13). One advantage of decomposition (3.14) is that it reduces
redundant computations. Observe that the inhomogeneous contribution contains no terms which
are associated with the input functions ξξξΓ = (ξ0, ξ1) =

(
v, ∂v∂n

) ∣∣
Γ
. The computational savings

that result from this observation are two-fold. On the one hand, we can compute the inhomo-
geneous contribution once and then, for each pair of input functions ξξξΓ = (ξ0, ξ1), simply add it
to the result of the homogeneous extension separately. On the other hand, if we desire to solve
a problem with a different right-hand side f , then we do not need to redo the homogeneous
extensions, but only the new inhomogeneous contribution. This latter observation implies that
solving multiple related problems will be very efficient, which we explore in the numerical tests
of Section 3.3.8.

In the case that ξξξΓ = (ξ0, ξ1) happens to be the trace of a function v which satisfies the
inhomogeneous Helmholtz equation (3.1a) on Ω, i.e., ξ0 = v|Γ and ξ1 = ∂v

∂n

∣∣
Γ
, then formula (3.7)

or, equivalently, (3.14), yields a fifth-order Taylor approximation of v. We emphasize, however,
that these formulae can be applied to any function ξξξΓ = (ξ0, ξ1) given at the boundary Γ, and
we will actually apply them to the specially chosen basis functions which are not traces of any
solution to the Helmholtz equation. This allows us to incorporate the boundary condition (3.1b)
into the discrete BEP (3.4). To that end, we consider the extension process defined by (3.14)
as an affine transformation Ex , which maps a pair of functions ξΓ = (ξ0, ξ1)

∣∣
Γ

defined on the
circle Γ to a new function ξγ defined at the nodes of the discrete boundary γ:

ξγ = ExξξξΓ = Ex (ξ0, ξ1)
∣∣
Γ

= ExH (ξ0, ξ1)
∣∣
Γ

+ ExIf, (3.15)

where ExH and ExI are the homogeneous and inhomogeneous contribution of (3.14), respec-
tively. Observe that while Ex is an affine mapping, ExH is a linear operator with respect to its
argument ξξξΓ.
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Note, that to ensure the design convergence rate of the overall method, the number of
terms in the Taylor formula (3.7) that defines the operator Ex must match in a particular way
the accuracy of the finite difference scheme employed inside the computational domain. The
corresponding relations follow from the approximation theorems of the continuous potentials of
elliptic operators by difference potentials proven by Reznik [38,39]. While the actual proofs are
delicate, the end results can be used in their own right, and some of those results are reproduced
in [18, Section 4.4]. Moreover, in practice it turns out that taking fewer terms in (3.7) than
prescribed by [38] may be sufficient. For the fourth-order accurate scheme (2.33) that we have
implemented for the current study, the original Reznik theorem would suggest taking six terms,
which is the sum of the accuracy of the scheme (fourth order) and the order of the differential
equation (second). However, it appears sufficient to truncate the Taylor expansion after the
fourth derivative term to preserve the overall fourth-order accuracy. For other finite difference
schemes, the number of terms in the expansion will need to be chosen accordingly, see [18,38,39]
for more detail.

3.2.2 Series representation of boundary functions

The next step is to select a basis for the space of smooth pairs of functions, ξξξΓ, on Γ:

ψψψ(0)
n = (ψ(0)

n , 0) and ψψψ(1)
n = (0, ψ(1)

n ), n = −∞, . . . ,∞. (3.16)

This basis will help us represent the data
(
u, ∂u∂n

)∣∣
Γ

of the solution u to problem (3.1), see
Section 3.2.3. Provided that the expansion of a given ξξξΓ with respect to system (3.16) converges
sufficiently fast, we may truncate it and replace the infinite series with a finite sum:

ξξξΓ =
N∑

n=−N
c(0)
n ψψψ(0)

n︸ ︷︷ ︸
(ξ0,0)

+
N∑

n=−N
c(1)
n ψψψ(1)

n︸ ︷︷ ︸
(0,ξ1)

, (3.17)

where the number N that would guarantee the desired accuracy can be taken relatively small.
This is the case, e.g., for the Fourier series when ξξξΓ are smooth periodic functions (see Sec-
tion 3.2.4). However, a different basis (3.16) may also be chosen, and the particular cases of
both Fourier and Chebyshev bases are invoked and discussed in subsequent examples to suit the
goal of solving specific non-standard boundary value problems (3.1). In addition, we emphasize
that the basis (3.16) may be selected independently of the discretization grid N0, and this is
accomplished by choosing the accuracy of representation (3.17) ahead of time so that it will
match or exceed the accuracy that can be achieved on the grid (this is done for our case in
Section 3.3.2).
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In the interest of solving problem (3.1), we will first apply the operator Ex of Section 3.2.1
and extend an arbitrary ξξξΓ represented by the truncated series (3.17), from the continuous
boundary Γ to the grid boundary γ. Then we substitute the resulting ξγ into the discrete BEP
(3.4). This yields a linear system in which the unknowns will be the coefficients c(0)

n and c
(1)
n ,

n = −N, . . . , N .

3.2.3 Applying the extension to form a linear system

Applying the extension operator Ex of (3.15) to the series representation (3.17) of a pair of
functions defined on the boundary, ξξξΓ, and noting that the operator is linear, we obtain:

ξγ = ExξξξΓ = Ex

(
N∑
n=0

c(0)
n ψψψ(0)

n +
N∑
n=0

c(1)
n ψψψ(1)

n

)

=
N∑
n=0

c(0)
n ExH ψψψ

(0)
n +

N∑
n=0

c(1)
n ExH ψψψ

(1)
n + ExIf.

(3.18)

where Ex ψψψ
(0)
n = Ex

(
ψ

(0)
n , 0

)
and Ex ψψψ

(1)
n = Ex

(
0, ψ(1)

n

)
according to (3.16). In the homoge-

neous case (i.e., where f = 0 and thus ExIf = 0 in the above), substituting expression (3.18)
into the discrete BEP (3.4) yields a system of linear algebraic equations:

N∑
n=−N

c(0)
n PγEx ψψψ(0)

n +
N∑

n=−N
c(1)
n PγEx ψψψ(1)

n =
N∑

n=−N
c(0)
n Ex ψψψ(0)

n +
N∑

n=−N
c(1)
n Ex ψψψ(1)

n ,

which we formalize by gathering the corresponding basis terms on the left-hand side:

N∑
n=−N

c(0)
n (Pγ − Iγ)Ex ψψψ(0)

n +
N∑

n=−N
c(1)
n (Pγ − Iγ)Ex ψψψ(1)

n = 0. (3.19)

If instead we solve an inhomogeneous problem, we substitute (3.18) into the inhomogeneous
discrete BEP (3.5) to yield the corresponding system, and the result of this substitution and
gathering the basis terms together is as follows:

N∑
n=0

c(0)
n (Pγ − Iγ)ExH ψψψ

(0)
n +

N∑
n=0

c(1)
n (Pγ − Iγ)ExH ψψψ

(1)
n = −TrG(h)B (h)f (h) − (Pγ − Iγ)ExIf,

(3.20)
In formulae (3.19-3.20), Iγ is the identity operator in the space of grid functions ξγ defined on
γ. In matrix form, the linear system (3.19) can be recast as

Qc = 0 , (3.21)
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where the matrix Q is given by

Q =
[

(Pγ − Iγ)Ex ψψψ
(0)
−N , . . . , (Pγ − Iγ)Ex ψψψ

(0)
N︸ ︷︷ ︸

Q0

, (Pγ − Iγ)Ex ψψψ
(1)
−N , . . . , (Pγ − Iγ)Ex ψψψ

(1)
N︸ ︷︷ ︸

Q1

]
,

(3.22)

and c is a vector of unknown coefficients, c =
[
c

(0)
−N , . . . , c

(0)
N , c

(1)
−N , . . . , c

(1)
N

]T
. Similarly, the

matrix form of the inhomogeneous equation (3.20) is given by

QHc = −TrG(h)B (h)f (h) −QIf, (3.23)

in which QH is the same as Q (3.22) in the homogeneous case, and the term QI is defined by
QIf = (Pγ − Iγ)ExIf .

The dimension of the matrix Q in (3.22), is |γ| × 2(2N + 1), where |γ| is the total number
of nodes in the grid boundary γ, and the dimension of the vector c is 2(2N + 1). The first
2N + 1 columns of the matrix Q form the sub-matrix Q0 and correspond to the coefficients
c

(0)
n , n = −N, . . . , N , while the last 2N+1 columns of Q form the sub-matrix Q1 and correspond

to the coefficients c(1)
n , n = −N, . . . , N . These dimensions are unchanged in the inhomogeneous

case, with the dimensions of QH matching those of Q , and the right-hand side terms of (3.23)
resolves to a single vector of length |γ|.

Any solution c =
[
c(0), c(1)

]
to the linear system (3.21) furnishes ξξξΓ via formula (3.17),

and this, in turn, yields ξγ = ExξξξΓ. As follows from the results of [38], the corresponding
difference potential (3.2) with the density ξγ provides a fourth-order accurate approximation to
the continuous Calderon potential of the Helmholtz operator L with the density ξξξΓ, see also [8,
Part III, Chapter 1] and [18, Section 4.4]. Moreover, the continuous Calderon potential u solves
the homogeneous Helmholtz equation (3.1a) on Ω, and the density ξξξΓ of (3.17) approximates
its data

(
u, ∂u∂n

)∣∣
Γ

on Γ. This is also the case when the equation is inhomogeneous: the solution
to the inhomogeneous linear system (3.23) provides the coefficients to approximate ξγ = ExξξξΓ

via formula (3.17), which, by design, solves the inhomogeneous BEP (3.5), and the solution of
the inhomogeneous Helmholtz equation is given by the inhomogeneous potential (3.6).

However, the linear system (3.21) may have multiple solutions. Indeed, it does not take into
account the boundary condition (3.1b) because it is derived from the discrete BEP (3.4) only. To
take the boundary condition into account and make sure the overall solution is unique, system
(3.21) needs to be modified and/or supplemented by additional equations. These remarks, as
well as the analysis that follows for the homogeneous case, apply immediately to the inhomoge-
neous problem also with no more modification than the inclusion of the inhomogeneous terms
of (3.23). The simplest cases to analyze are those of the Dirichlet and Neumann boundary
conditions, which we will now present.
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Simple cases: Dirichlet and Neumann problems When the boundary condition is Dirich-
let, equation (3.1b) reduces to u

∣∣
Γ

= φΓ, and we can expand the given Dirichlet data function
φΓ (i.e., the first component of the data) with respect to the chosen basis (3.16), yielding the

coefficients c(0)
n , n = −N, . . . , N . Recalling that c =

[
c(0), c(1)

]
=
[
c

(0)
−N , . . . , c

(0)
N , c

(1)
−N , . . . , c

(1)
N

]T
in (3.21), the vector c(0) in the Dirichlet case can be considered given while the vector c(1) is
unknown. Accordingly, system (3.21) is recast as Q1c

(1) = −Q0c
(0), where the right-hand side

can now be thought of as a given vector of dimension |γ|. Then, the system is solved for c(1) in
the sense of least squares.

We may choose the number of basis functions N independent of the size of the discretization
grid N0. This number can be fixed so that the accuracy of the truncated expansion (3.17) at the
boundary would exceed any accuracy that one might expect to obtain on the grid. This is easy
to achieve at a moderate cost, because when the boundary data are smooth and periodic, their
Fourier expansion converges rapidly (see footnote 3 on page 44) and the resulting N appears
not very large. Numerical studies on how to efficiently choose the the number of basis functions
for each grid is considered in Section 3.3. Once the dimension N of the boundary representation
(3.17) has been fixed, the final accuracy of the solution on the domain is controlled only by the
size of the grid N0. For sufficiently fine grids, one should typically expect |γ| � 2N + 1. Hence,
the system Q1c

(1) = −Q0c
(0) is overdetermined and admits a robust solution by least squares.

Moreover, as the original boundary value problem (3.1) has a unique solution, the discrete least
squares solution is “almost classical” in the sense that as the grid is refined, the residual at the
minimum decreases to zero with the rate determined by the accuracy of the finite difference
approximation.

In the Neumann case, conversely, the vector c(1) is given by expanding the boundary con-
dition ∂u

∂n = φ|Γ with respect to the basis (3.16), the vector c(0) is unknown, and the system
Q0c

(0) = −Q1c
(1) is solved in the sense of the least squares for c(0). In any case, once both

c(0) and c(1) are known, the vector c = [c(0), c(1)] is substituted into (3.17), and the resulting
ξξξΓ is extended to γ via the extension operator: ξγ = ExξξξΓ. The difference potential (3.2) with
density ξγ is then computed to approximate the solution u to the boundary value problem (3.1)
with fourth-order accuracy on the grid N+.

A more detailed analysis of the Dirichlet and Neumann boundary conditions is provided
in [18] with numerical verification on both a circular and an elliptical boundary, as well as an
analysis of a simple Robin boundary condition with constant coefficients (but without corre-
sponding numerical computations). In Sections 3.2.4 and 3.2.5, we present a more comprehensive
analysis of the Robin boundary condition, which includes variable and/or discontinuous coeffi-
cients. In particular, this allows us to consider mixed boundary conditions, e.g., Dirichlet on one
part of the boundary and Neumann on the other part of the boundary. As stated previously, this
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analysis holds for the inhomogeneous case as well with the addition of the inhomogeneous terms
of (3.23). We present numerical verification of each of these BC types for both homogeneous
and inhomogeneous problems in Section 3.3.

Finally, we emphasize that the reduction of problem (3.1) from its domain to the boundary
based on Calderon’s boundary equations with projections, regardless of the type of the boundary
condition (3.1b), is always well posed as long as the original problem (3.1) itself is well posed,
see [8,18]. This is in contrast to methods based on boundary integral equations, for which care
must be exercised, on a case-by-case basis, in choosing the equivalent boundary sources such
that the resulting Fredholm integral equation is of the second kind (well-posed) rather than the
first kind (ill-posed).

3.2.4 The Robin boundary condition with smooth variable coefficients

Consider the case that formula (3.1b) represents a general Robin boundary condition with
variable coefficients:

α(θ)u(θ) + β(θ)
∂u

∂n
(θ) = φ(θ), (3.24)

where α, β, and φ are smooth periodic functions of the polar angle θ ∈ [0, 2π]. We expand
each term of (3.24) with respect to the chosen basis (3.16), and obtain a set of linear algebraic
equations that will supplement system (3.21). In doing so, it will be convenient, though not
necessary, to consider the same basis functions for both u and ∂u

∂n , so that ψ(0)
n = ψ

(1)
n , n =

−N, . . . , N , in formula (3.16).
Since formula (3.24) is comprised of smooth 2π-periodic functions, it is natural to choose

a complex-exponential Fourier basis, ψ(0)
n (θ) = ψ

(1)
n (θ) = einθ. To express the left-hand side of

(3.24) in this basis, we use a well-known convolution formula for the Fourier coefficients of a
product of two functions. Let f(θ) and g(θ) be 2π-periodic, and denote by f̂n and ĝn their Fourier
coefficients for the expansion with respect to the complex exponentials einθ, n = 0,±1,±2, . . ..
Then, it is easy to show that

(̂fg)n =
1

2π

∞∑
m=−∞

ĝmf̂m−n. (3.25)

We now expand the boundary condition (3.24) using this result. Let c(0)
n and c

(1)
n represent

the Fourier coefficients of u(θ) and ∂u
∂n (θ), respectively, and let α̂n, β̂n, and φ̂n be the coefficients

of α(θ), β(θ), and φ(θ), respectively. Then, according to (3.25), formula (3.24) becomes:

1
2π

∞∑
n=−∞

( ∞∑
m=−∞

α̂mc
(0)
m−n +

∞∑
m=−∞

β̂mc
(1)
m−n

)
einθ =

1
2π

∞∑
n=−∞

φ̂ne
inθ.

By orthogonality of the basis functions, we obtain the following linear equation for each n:
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∞∑
m=−∞

(
α̂mc

(0)
m−n + β̂mc

(1)
m−n

)
= φ̂n. (3.26)

Moreover, since for sufficiently smooth functions their Fourier coefficients decay rapidly,3 it is
sufficient to take only finitely many equations from (3.26) to supplement system (3.21). The
summation range on the left-hand side of each of these equations can also be chosen finite. The
specific number of equations needed will be determined based on the desired accuracy of the
Fourier expansions.

Assume we are given a tolerance ε > 0. Then, using the generic notations f(θ) and g(θ), we
can find a positive integer number N [cf. formula (3.17)] such that

|f̂n| < ε and |ĝn| < ε for |n| > N. (3.27)

Since the coefficients f̂n and ĝn decay rapidly, the number N in formula (3.27) is typically not
large even if ε is taken on the order of the machine precision (specific choices that we have made
for particular examples are discussed in Section 3.3.) In general, assuming that ε in (3.27) is
small, we can replace all of the coefficients with indices |n| > N in the Fourier expansions of f
and g by zeros.

We therefore consider a pair of sufficiently smooth 2π-periodic functions f(θ) and g(θ) for
which we set f̂n = 0 and ĝn = 0 for |n| > N . To find the coefficients (̂fg)n of the truncated
Fourier expansion for their product fg, we identify and exclude from the last sum on the right-
hand side of formula (3.25) all terms for which either f̂m−n = 0 or ĝm = 0 (i.e., those terms,
for which either |m− n| > N or |m| > N , respectively.)

If n > 0, then m > m − n; thus, the upper bound for the summation will be m = N , and
the lower bound will be achieved when m − n = −N , which, solved for m, yields m = n −N .
Similarly, when n < 0, we have m < m− n, which results in the lower bound being reached by
m = −N , and the upper bound is reached by m − n = N , which implies m = n + N . Hence,
we have:

(̂fg)n =



N∑
m=n−N

ĝmf̂m−n, 0 6 n 6 2N,

n+N∑
m=−N

ĝmf̂m−n, −2N 6 n < 0.

(3.28a)

If n > 2N , then the summation range in the first sum on the right-hand side of (3.28a)
becomes empty; if n < −2N , then the summation range becomes empty in the second sum.

3For an r-differentiable function with the derivative of order r in L2, the rate of decay of its Fourier coefficients

is o(n−r), and accordingly, the rate of convergence of its Fourier series is o(n−(r− 1
2 )), see, e.g., [40, Section 3.1.3].
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Empty summation ranges yield zero Fourier coefficients so that

(̂fg)n = 0, |n| > 2N. (3.28b)

Applying formulae (3.28) to equations (3.26), we arrive at the following finite system:

N∑
m=n−N

(
α̂mc

(0)
m−n + β̂mc

(1)
m−n

)
= φ̂n, 0 6 n 6 2N,

n+N∑
m=−N

(
α̂mc

(0)
m−n + β̂mc

(1)
m−n

)
= φ̂n, −2N 6 n < 0,

(3.29)

where the terms φ̂n on the right-hand side become zero whenever |n| > N .
System (3.29) provides 4N + 1 additional equations to supplement the |γ| equations of

system (3.21). The purpose of equations (3.29) is to take into account the boundary condition
(3.24), which is a particular form of (3.1b), whereas system (3.21) is responsible for satisfying
the differential equation (3.1a). Combining them yields a non-trivial solution which will satisfy
both the differential equation and boundary condition. The only inhomogeneity of the overall
system of equations comes from the coefficients φ̂n that are non-zero, i.e., from equations (3.29)
with n = −N, . . . , N . The dimension of system (3.21), (3.29) is [|γ|+(4N+1)]×2(2N+1), and
its solution c = [c(0)

−N , . . . , c
(0)
N , c

(1)
−N , . . . , c

(1)
N ]T is to be sought for in the sense of least squares.

In the previously analyzed cases of the Dirichlet and Neumann boundary conditions, this
systems simplifies to coincide with our prior analysis. The Dirichlet boundary condition is
equivalent to α = 1 and β = 0 in the general equation (3.24), yielding u(θ) = φ(θ). Then,
α̂0 = 1, α̂n = 0 for n = −N, . . . ,−1, 1, . . . , N , and β̂n = 0 for n = −N, . . . , N , so that system
(3.29) reduces to

c(0)
n = φ̂n, n = −2N, . . . , 2N.

Moreover, as φ̂n = 0 for |n| > N , we can simply disregard the corresponding coefficients c(0)
n ,

and keep only those c(0)
n , for which n = −N, . . . , N . Substituting these c(0)

n = φ̂n into (3.21), we
get:

Q1


c

(1)
−N
...

c
(1)
N

 = −Q0


φ̂−N

...
φ̂N

 ,
which is to be solved by least squares with respect to the unknown c

(1)
n , n = −N, . . . , N .

Similarly, the Neumann boundary condition corresponds to α = 0 and β = 1 in for-
mula (3.24). Consequently, α̂n = 0 for n = −N, . . . , N , β̂1 = 1, and β̂n = 0 for n =
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−N, . . . ,−1, 1, . . . , N . This reduces equations (3.29) to

c(1)
n = φ̂n, n = −2N, . . . , 2N.

Again, we disregard those c(1)
n for which n = −2N, . . . ,−N − 1, N + 1, . . . , 2N , because the

corresponding φ̂n = 0 for |n| > N . Substituting the remaining c(1)
n = φ̂n, n = −N, . . . , N , into

(3.21) yields

Q0


c

(0)
−N
...

c
(0)
N

 = −Q1


φ̂−N

...
φ̂N

 .
This is precisely the approach explained in Section 3.2.3 for Dirichlet and Neumann BCs, and
the analysis of the inhomogeneous case is equivalent with the addition of the inhomogeneous
terms on the right-hand side.

In the cases other than those of the Dirichlet or Neumann boundary conditions, the full sys-
tem (3.29) has 4N+1 equations, and it is not immediately obvious whether the 2N homogeneous
equations can likewise be disregarded. Indeed, while it is possible that for −2N 6 n 6 −N − 1
or for N + 1 6 n 6 2N the products of small terms on the left-hand side of the corresponding
equations (3.29) will be o(ε) [i.e., asymptotically smaller than O(ε)], it is not automatically
guaranteed. Experimentally, the setting with no homogeneous equations in (3.29) was tested,
and we observed that keeping or dropping those equations made very little difference for the
cases computed in Section 3.3.3. Theoretically, however, this issue requires more analysis, which
we leave for future study.

3.2.5 The Robin boundary problem with discontinuous variable coefficients

Consider the general Robin boundary condition (3.24), but with the relaxed assumptions that
α, β, and φ are bounded and piecewise smooth rather than globally smooth. For simplicity,
assume that Γ = Γ1 ∪ Γ2, where Γ1 includes all points on the circle with θ ∈ [0, a) and Γ2

includes all points on the circle with θ ∈ [a, 2π) for some 0 < a < 2π. Assume that α, β, and φ
are smooth and bounded on either Γ1 or Γ2, but are not necessarily continuous on the entire
circle Γ. For example, they may have a jump discontinuity at θ = 0 and/or θ = a.

Since the boundary data are no longer assumed to be periodic, we introduce a Chebyshev
basis. Consider the standard Chebyshev polynomial basis, {Tn(x)}∞n=0, x ∈ [−1, 1], with the
weight ω(x) = 2/π

√
1− x2. For a given function f(x), denote its Chebyshev coefficients by f̂n,

n = 0, 1, 2, . . . To express the left-hand side of the boundary condition (3.24) in the Chebyshev
basis, we need to find the form of the expansion for the products α(θ)u(θ) and β(θ) ∂u∂n (θ). In
appendix A, the Chebyshev coefficients of a product are derived for a pair of arbitrary smooth
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functions f and g on [−1, 1], see formulae (A.2). To implement this expansion in practice,
one first needs to truncate it and replace the series by a finite sum. As Chebyshev coefficients
of smooth functions decay rapidly (the relation between the rate of decay and smoothness is
similar to that for the Fourier coefficients, see footnote 3 on page 44), for a given ε > 0 we can
choose a relatively small number N such that

|f̂n| < ε, n > N,

|ĝn| < ε, n > N.

We therefore, set f̂n = ĝn = 0 for n > N . Then formula (A.2a) for n = 0 immediately yields

(̂fg)0 = 2ĝ0f̂0 +
N∑
m=1

ĝmf̂m. (3.30a)

Consider the case 0 < n 6 N . On the right-hand side of the last equality in (A.2b), we first
replace the upper limit in the last sum by N because the factor ĝm in the product under the
sum will be set to zero beyond m = N . Next, since n > 0, we notice that the index m + n is
the largest, and the corresponding terms become zero when m > N − n, which yields:

(̂fg)n =
1
2

(
n−1∑
m=0

ĝm(f̂n−m + f̂n+m) + ĝn(f̂2n + 2f0) +
N∑

m=n+1

ĝmf̂m−n +
N−n∑
m=n+1

ĝmf̂m+n

)
.

(3.30b)
We use equation (3.30b) when 1 6 n < N

2 . Clearly the term f̂2n in (3.30b) is zero whenever
n > N

2 because its index will be 2n > N . Moreover, the last sum will be zero for n > N
2 since

the smallest index of f̂m+n will be m+ n = N
2 + 1 + N

2 > N . To write the resulting formula in
a convenient manner while eliminating the zero terms for n > N

2 , we first rearrange (3.30b) so
that the terms with the largest indices appear last:

(̂fg)n =
1
2

(
n−1∑
m=0

ĝmf̂n−m + 2ĝnf̂0 +
N∑

m=n+1

ĝmf̂m−n +
n−1∑
m=0

ĝmf̂m+n + ĝnf̂2n +
N−n∑
m=n+1

ĝmf̂m+n

)
.

Next, we eliminate terms as the index becomes larger since they become zero. If n > N
2 (note

that n = N
2 can occur only if N is even), then the summation range in the last sum becomes

empty since

N − n 6 N − N

2
=
N

2
6 n < n+ 1.
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Thus, if N is even, then we can write for n = N
2 :

(̂fg)n =
1
2

(
n−1∑
m=0

ĝmf̂n−m + 2ĝnf̂0 +
N∑

m=n+1

ĝmf̂m−n +
n−1∑
m=0

ĝmf̂m+n + ĝnf̂2n

)
. (3.30c)

Notice that the index m + n in the last sum of (3.30c) exceeds N if m > N − n. At the same
time, we see that if N

2 < n 6 N , then N − n < n − 1. Thus, replacing the upper limit in the
last sum of (3.30c) by the tighter bound N − n, we have, for N

2 < n 6 N ,

(̂fg)n =
1
2

(
n−1∑
m=0

ĝmf̂n−m + 2ĝnf̂0 +
N∑

m=n+1

ĝmf̂m−n +
N−n∑
m=0

ĝmf̂m+n

)
. (3.30d)

For N < n 6 2N , the summation range in the second to last sum in (3.30d) is empty. In
addition, ĝn = 0 and f̂m+n = 0 for any m > 0. Consequently, only the first sum will remain,
with the upper bound replaced by N since now n− 1 > N :

(̂fg)n =
1
2

N∑
m=1

ĝmf̂n−m, n = N + 1, . . . , 2N. (3.30e)

Finally, observe for n > 2N that n−m > 2N −m > N , which leaves no non-zero terms so that

(̂fg)n = 0, n > 2N. (3.30f)

Altogether, the coefficients of the truncated Chebyshev expansion for the product fg are given
by equation (3.30a) for n = 0, (3.30b) for 1 6 n < N

2 , (3.30c) for n = N
2 (note that this occurs

only if N is even), (3.30d) for N
2 < n 6 N , (3.30e) for N < n 6 2N , and (3.30f) for n > 2N .

We now derive the supplementary linear system by applying formulae (3.30) to the general
boundary condition (3.24). Recall that we are considering a continuous boundary Γ partitioned
into two pieces, Γ = Γ1∪Γ2, which are two arcs of the circle of radius 1 on the intervals θ ∈ [0, a)
and θ ∈ [a, 2π), respectively. We now recast the boundary condition (3.24) as

α(1)(θ)u(θ) + β(1)(θ)
∂u

∂n

(
θ
)

=φ(1)(θ) on Γ1,

α(2)(θ)u(θ) + β(2)(θ)
∂u

∂n

(
θ
)

=φ(2)(θ) on Γ2.

(3.31)

To utilize the Chebyshev basis for (3.31), we perform a linear change of variables on Γ1 and
Γ2 from θ to x so that x ∈ [−1, 1) in each respective case. For Γ1, we have θ ∈ [0, a) and
consequently,

x =
θ

a
+
θ − a
a

, (3.32a)
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whereas for Γ2 we have θ ∈ [a, 2π), and the transformation is given by

x =
θ − a

2π − a
+
θ − 2π
2π − a

. (3.32b)

We consider two independent Chebyshev bases, one on each of the arcs, Γ1 and Γ2, and denote
their respective dimensions by N1 and N2. As such, we have two double-sets of coefficients:[

c(0,1), c(1,1)
]T

=
[
c

(0,1)
0 , . . . , c

(0,1)
N1

, c
(1,1)
1 , . . . , c

(1,1)
N1

]T
,[

c(0,2), c(1,2)
]T

=
[
c

(0,2)
0 , . . . , c

(0,2)
N2

, c
(1,2)
1 , . . . , c

(1,2)
N2

]T
,

so that c =
[
c(0,1), c(1,1), c(0,2), c(1,2)

]T
. Accordingly, instead of formula (3.17) we now have:

ξξξΓ =
N1∑
n=0

c(0,1)
n ψψψ(0,1)

n +
N2∑
n=0

c(0,2)
n ψψψ(0,2)

n︸ ︷︷ ︸
(ξ0,0)

+
N1∑
n=0

c(1,1)
n ψψψ(1,1)

n +
N2∑
n=0

c(1,2)
n ψψψ(1,2)

n︸ ︷︷ ︸
(0,ξ1)

,

where

ψψψ(0,1)
n =

(Tn, 0) on Γ1,

(0, 0) on Γ2,
ψψψ(0,2)
n =

(0, 0) on Γ1,

(Tn, 0) on Γ2,

ψψψ(1,1)
n =

(0, Tn) on Γ1,

(0, 0) on Γ2,
ψψψ(1,2)
n =

(0, 0) on Γ1,

(0, Tn) on Γ2.

(3.33)

The extension of a given basis function from (3.33) to the discrete boundary γ is done
according to the same formulae derived for the Taylor expansion in Section 3.2.1. The matrix
Q is now partitioned into 4 blocks rather than 2, and will have the dimension |γ| × [2(N1 +
1) + 2(N2 + 1)]:

Q =
[
Q

(1)
0 Q

(1)
1 Q

(2)
0 Q

(2)
1

]
. (3.34)

As in the previous case (Section 3.2.4), the corresponding homogeneous linear system (3.21) with
the matrix Q of (3.34) accounts for the differential equation (3.1a) but not for the boundary
condition (3.1b). Thus, we supplement it with additional equations to account for the boundary
conditions.

Transforming the boundary condition (3.31) according to (A.1) and taking into account
formulae (3.30) for the coefficients of the truncated Chebyshev expansion of a product of two
functions, we obtain a set of additional linear equations for each Γi, i = 1, 2. Specifically, we
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have for n = 0:

c
(0,i)
0 α̂

(i)
0 +

1
2

Ni∑
m=1

c(0,i)
m α̂(i)

m + c
(1,i)
0 β̂

(i)
0 +

1
2

Ni∑
m=1

c(1,i)
m β̂(i)

m = φ̂
(i)
0 , (3.35a)

for 1 6 n < Ni
2 :

1
2

(
n−1∑
m=0

c(0,i)
m

(
α̂

(i)
n−m + α̂

(i)
n+m

)
+ c(0,i)

n

(
α̂

(i)
2n + 2α̂(i)

0

)
+

Ni∑
m=n+1

c(0,i)
m α̂

(i)
m−n +

Ni−n∑
m=n+1

c(0,i)
m α̂

(i)
m+n

+
n−1∑
m=0

c(1,i)
m

(
β̂

(i)
n−m + β̂

(i)
n+m

)
+ c(1,i)

n

(
β̂

(i)
2n + 2β̂(i)

0

)
+

Ni∑
m=n+1

c(1,i)
m β̂

(i)
m−n +

Ni−n∑
m=n+1

c(1,i)
m β̂

(i)
m+n

)
= φ̂(i)

n ,

(3.35b)

for n = Ni
2 (if Ni is even):

1
2

(
n−1∑
m=0

c(0,i)
m

(
α̂

(i)
n−m + α̂

(i)
n+m

)
+ c(0,i)

n

(
α̂

(i)
2n + 2α̂(i)

0

)
+

Ni∑
m=n+1

c(0,i)
m α̂

(i)
m−n

+
n−1∑
m=0

c(1,i)
m

(
β̂

(i)
n−m + β̂

(i)
n+m

)
+ c(1,i)

n

(
β̂

(i)
2n + 2β̂(i)

0

)
+

Ni∑
m=n+1

c(1,i)
m β̂

(i)
m−n

)
= φ̂(i)

n ,

(3.35c)

for Ni
2 < n 6 Ni:

1
2

(
n−1∑
m=0

c(0,i)
m α̂

(i)
n−m + 2c(0,i)

n α̂
(i)
0 +

Ni∑
m=n+1

c(0,1)
m α̂

(1)
m−n +

Ni−n∑
c(0,i)
m α̂

(i)
n+m

+
n−1∑
m=0

c(1,i)
m β̂

(i)
n−m + 2c(1,i)

n β̂
(i)
0 +

Ni∑
m=n+1

c(1,i)
m β̂

(i)
m−n +

Ni−n∑
c(1,i)
m β̂

(i)
n+m

)
= φ̂(i)

n ,

(3.35d)

and for Ni < n 6 2Ni:

1
2

(
Ni∑
m=0

c(0,i)
m α

(i)
n−m +

Ni∑
m=0

c(1,i)
m β

(i)
n−m

)
= 0. (3.35e)

This gives us a total of 2Ni + 1 extra equations for the 2(Ni + 1) coefficients [c(0,i), c(1,i)],
where i ∈ {1, 2}, so that the augmented system comprised of (3.21) with Q given by (3.34) and
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equations (3.35) will have the dimension (|γ|+ 2N1 + 1 + 2N2 + 1)× [2(N1 + 1) + 2(N2 + 1)].
It shall be solved in the sense of least squares. We also observe that the only inhomogeneity in
the overall system arises from the supplemental equations (3.35a–3.35d) which account for the
boundary condition, whereas the remaining supplemental equations (3.35e) are homogeneous.

Finally, we demonstrate that in the case of simple boundary conditions, such as Dirichlet
or Neumann, the supplemental equations reduce to a diagonal system. For example, consider a
Dirichlet boundary condition on Γ1 and a Neumann boundary condition on Γ2. Then,

α(1)(θ) = 1, β(1)(θ) = 0,

α(2)(θ) = 0, β(2)(θ) = 1.

Thus the Chebyshev coefficients of α(i) and β(i), i = 1, 2, will be:

α̂
(1)
0 = 1, α̂(1)

n = 0 for n = 1, . . . , N,

β̂(1)
n = 0 for n = 0, . . . , N,

α̂(2)
n = 0 for n = 0, . . . , N,

β̂
(2)
0 = 1, β̂(2)

n = 0 for n = 1, . . . , N.

Consequently, equations (3.35) for i = 1 reduce to

c
(0,1)
0 = φ̂

(1)
0 for n = 0 from (3.35a),

c(0,1)
n = φ̂(1)

n for n = 1, . . . , N1 from (3.35b)–3.35d,

0 = 0 for n = N1 + 1, . . . , 2N1 from (3.35e),

(3.36)

while for i = 2 they reduce to

c
(1,2)
0 = φ̂

(2)
0 for n = 0 from (3.35a),

c(1,2)
n = φ̂(2)

n for n = 1, . . . , N1 from (3.35b–3.35d),

0 = 0 for n = N1 + 1, . . . , 2N1 from (3.35e).

(3.37)

Subsequently, we substitute (3.36) and (3.37) into system (3.21) as we did in the Fourier case
(Section 3.2.4) to obtain a reduced system for the coefficients that remain unknown, c(1,1) and
c(0,2) that is also solved in the sense of least squares. Clearly, any combination of the Dirichlet
and Neumann boundary conditions on Γ1 and Γ2 will yield a similar reduced system, and also
any inhomogeneity of the equation (3.1a) will require only the addition of the inhomogeneous
terms of the discrete BEP (3.23).

To conclude this section we mention that the same considerations as outlined in Section 3.2.4
for the Fourier case, apply to the Chebyshev case as well. Namely, the dimensions N1 and N2
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should be chosen so as to have the accuracy of the truncated Chebyshev expansion on either Γ1

or Γ2 exceed the accuracy attainable on the grid, and the specific choices that we have made
are discussed in Section 3.3. Moreover, other than for the simple Dirichlet and Neumann cases
it is not clear whether the homogeneous supplemental equations (3.35e) can be dropped from
the overall system — this question requires further theoretical inquiry.

Another avenue for further consideration is the potential for the undesirable growth in the
total number of basis functions needed when splitting the boundary Γ into segments, and using
an independent basis for each piece. At first glance, it appears that we would accumulate basis
functions linearly with respect to the number of partitions, eventually sacrificing the efficiency
of the method. In fact, this should not be the case. A priori, any function on the continuous
boundary Γ will experience less variation on a subinterval Γi ⊂ Γ than on the whole of Γ,
even if the boundary data are oscillatory. Thus, achieving the same level of accuracy by the
expansion will require fewer coefficients on Γi than it would on Γ, and this property would
reduce the accumulation of basis functions due to the splitting of Γ into smaller subintervals.
Specific quantitative estimates along these lines will be a subject for future study.

3.2.6 Derivatives of the Chebyshev polynomials near the endpoints

The extension from the continuous boundary Γ to the discrete boundary γ via the Taylor
formula (3.7) is done independently for each basis function (see Section 3.2.2), and this process
requires us to provide the basis functions themselves as well as their tangential derivatives up
to the fourth order, see formulae (3.12) and (3.13).4 For the Chebyshev basis it is well-known
that the derivatives of the polynomials Tn(x) near the endpoints x = ±1 are not singular, but
their values become large. For example, the first derivative of the nth polynomial is

T ′n(x) = (cos(n arccosx))′ =
n sin(n arccosx)√

1− x2
,

and taking successive derivatives will clearly retain the term 1 − x2 in the denominator with
increasingly higher exponents. Inevitably, whether by chance or by sufficient refinement of the
grid, we will need to compute the values of these derivatives “close” to the endpoints x = 1
and/or x = −1. Specifically, this happens when the foot of the normal dropped from a given
node of γ to Γ, see Section 3.2.1, appears to be close to one of the points that partition Γ into
segments (θ = 0 or θ = a in Section 3.2.5). In this case, the overall accuracy may deteriorate via
the loss of significant digits. We have, in fact, computationally observed such a loss of accuracy.

To avoid this undesirable phenomenon, we employ an approach that allows us to completely
eliminate the need to compute the derivatives of the Chebyshev basis functions near the end-

4Additionally, for a higher-order scheme one may need to use a higher-order Taylor formula, requiring even
higher-degree tangential derivatives to be supplied.
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points. The key idea of the approach is to use an extended interval for the Chebyshev basis.
That is, instead of linearly transforming the intervals θ ∈ [0, a) and θ ∈ [a, 2π), i.e., the arcs of
the circle Γ1 and Γ2, to the interval x ∈ [−1, 1) to form the Chebyshev expansion, see formulae
(3.32), we will instead linearly transform them to a smaller interval x ∈ [−1 + ε, 1 − ε) where
ε > 0:

x =
(
θ

a
+
θ − a
a

)
(1− ε) (3.38a)

and
x =

(
θ − a

2π − a
+
θ − 2π
2π − a

)
(1− ε). (3.38b)

In doing so, formulae (3.38a) and (3.38b) obviously provide a transformation between the full
interval x ∈ [−1, 1) and the two extended intervals of the variable θ:

x ∈ [−1, 1) ←→ θ ∈ [−aσ, a+ aσ) (3.39a)

and
x ∈ [−1, 1) ←→ θ ∈ [a− (2π − a)σ, 2π + (2π − a)σ), (3.39b)

respectively, where σ = 1
2

ε
1−ε > 0.

We then extend all the functions that define the problem, α(1)(θ), β(1)(θ), φ(1)(θ) and
α(2)(θ), β(2)(θ), φ(2)(θ), see formula (3.31), smoothly but otherwise arbitrarily from their re-
spective intervals [0, a) and [a, 2π) to the extended intervals (3.39a) and (3.39b), so that they can
subsequently be represented as functions of x using a standard Chebyshev series on [−1, 1). We
also formally assume that the unknown functions u and ∂u

∂n are defined on the same extended
intervals (3.39) so that we can identically reproduce all the arguments of Section 3.2.5 and
obtain the same supplemental equations (3.35). At the same time, to build the extension (3.7),
(3.8) of a given basis function from Γ to γ we will need to know this function only on the
corresponding arc Γ1 ⇔ θ ∈ [0, a) or Γ2 ⇔ θ ∈ [a, 2π), or, equivalently, on the reduced interval
[−1 + ε, 1 − ε), because it is those actual arcs where the normals from γ can meet Γ, whereas
the “tails” x ∈ [−1,−1 + ε) and x ∈ [1 − ε, 1) are artificial. Hence, the extension operator
Ex will never require any information from these tails and there will be no need to compute
the derivatives of the basis functions near the endpoints (i.e., closer than ε to endpoints). It is
only the reduced interval [−1 + ε, 1− ε) that will eventually contribute to system (3.21) which
represents the discrete BEP (3.4).

Let f(x) be a smooth function defined on [−1 + ε, 1− ε], where 0 < ε < 1, and let f̃(x) be
any smooth extension of f(x) to the full interval [−1, 1] (i.e., f̃(x) ≡ f(x) for |x| 6 1− ε, and
f̃(x) is smooth on all of [−1, 1]). Then, we expand f̃ in the Chebyshev basis, see (A.1):
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f̃(x) =
∞∑
n=0

ˆ̃
fnTn(x), x ∈ [−1, 1], (3.40)

Since series (3.40) converges uniformly, then, clearly, the same convergence takes place on any
subinterval, which implies, in particular, that

f(x) =
∞∑
n=0

ˆ̃
fnTn(x), x ∈ [−1 + ε, 1− ε]. (3.41)

We emphasize that even though the coefficients ˆ̃
fn of the series (3.40) depend on what particular

extension of f(x) from [−1 + ε, 1− ε] to [−1, 1] we choose, this dependence manifests itself only
through the fact that the sum of the series (3.40) will vary on the tails 1− ε < |x| 6 1. At the
same time, on the central sub-interval |x| 6 1−ε the sum of the series (3.41) remains the same,
i.e., equal to the original f(x), regardless of the specific behavior of f̃(x) for 1− ε < |x| 6 1.

Accordingly, the Chebyshev coefficients ˆ̃α(i)
n , ˆ̃

β
(i)
n , and ˆ̃

φ
(i)
n , where i = 1, 2, will depend on

the respective extensions of the functions α(i), β(i), and φ(i) from [−1 + ε, 1 − ε] to [−1, 1].
As these coefficients provide the data for the supplemental equations (3.35), the solution c =[
c(0,1), c(1,1), c(0,2), c(1,2)

]T
of the overall system (3.21), (3.35), where the matrix Q is given by

(3.34), will also be affected by what extension of α(i), β(i), and φ(i), i = 1, 2, has been chosen.
However, the resulting variation of c will, again, correspond only to the variation of u and ∂u

∂n

on the extension tails 1 − ε < |x| 6 1 of both arcs, Γ1 and Γ2, and will not affect the solution
on the interior subinterval |x| 6 1− ε, i.e., on the actual arcs themselves.

In other words, what we essentially do is enforce the boundary conditions (3.31) on the
extended intervals (3.39), while the differential equation (3.1a) is still enforced on the original
boundary Γ = Γ1 ∪ Γ2 through the discrete BEP (3.4). In doing so, extension (3.39) keeps
the original boundary data, and hence the definition of the problem, unaffected. At the same
time, the redundancy that we build into the treatment of the boundary conditions by using the
extensions allows us to circumvent the difficulties in computing the derivatives of the Cheby-
shev basis functions near the endpoints. The practical choice of the tolerance ε is discussed in
Section 3.3.2.

The only remaining question is how to actually obtain the extended function f̃ for a given
f . Recall that the behavior of the tails of f̃ (i.e., the part for which |x| > 1− ε) will not affect
the convergence of the series (3.41) to f(x) for x ∈ [−1 + ε, 1− ε]. Thus we are free to choose
any smooth, bounded extension of f . In the case that we are given an analytic formula for f(x),
x ∈ [−1 + ε, 1− ε], which also defines a smooth function on [−1, 1], we can simply use the same
formula on the larger interval. Otherwise, we can employ a polynomial extension of order J :
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f̃(x) =


f(x), x ∈ [−1 + ε, 1− ε],∑J

j=0
1
j!
djf(−1+ε)

dxj
(x+ 1− ε)j , x < −1 + ε,∑J

j=0
1
j!
djf(1−ε)
dxj

(x− 1 + ε)j , x > 1− ε.

(3.42)

Formula (3.42) guarantees that the extended function f̃ is smooth and hence bounded on [−1, 1].
In Sections 3.3.5 and 3.3.9, we compare the performance of the algorithm with and without

use of the extended Chebyshev intervals. Our computations convincingly corroborate that the
proposed approach completely eliminates the adverse numerical effect of having large derivatives
near the endpoints. Therefore, we did not feel necessary to look for any alternatives. Yet one
may, of course, use other strategies as well. For example, another well known orthogonal system
that guarantees rapid convergence of the expansion for smooth non-periodic functions is the
Legendre polynomials [41, Appendix B.1]. The behavior of the derivatives of the original Legen-
dre polynomials near the endpoints is similar to that of the Chebyshev polynomials. However,
the associated Legendre functions vanish near the endpoints along with a certain number of
derivatives [42, Section 18.11]. hence, they can potentially be used, although this approach will
require a further inquiry. Yet one more alternative approach may be to use a mapping which
alleviates the density of the Chebyshev nodes near the endpoints, see [43,44].

3.2.7 Structure of the algorithm

From the discussion in Sections 3.2.1 through 3.2.5 we see that the entire computational pro-
cedure can fundamentally be split into two parts. The first part involves selecting the basis
on the boundary Γ, see (3.16) or (3.33); extending the individual basis functions from Γ to
γ with the help of the homogeneous contribution of the extension operator ExH , see (3.7),
(3.8); applying the discrete projection (3.3) by solving the AP (2.52); and eventually obtaining
the linear system (3.21) based on the discrete BEP (3.4) [the matrix Q is given by (3.22) or
(3.34)]. This part does not involve the boundary condition (3.1b) in any way, and hence does
not change when this boundary condition changes. In particular, one and the same system
(3.21) will work for any boundary condition of type (3.24), whether it be pure Dirichlet, pure
Neumann, or general Robin boundary condition with smooth α, β, and φ. The only differences
for an inhomogeneous problem are that inhomogeneous contribution to the extension ExI must
be applied to the right-hand side f of (3.1a); the inhomogeneous projection then included in
the formation of the linear system (3.23), which is based on the inhomogeneous

The second part of the algorithm accounts for the boundary conditions via the supplemental
equations (3.29) or (3.35). It is this part only that changes when the boundary condition changes,
while otherwise the algorithm stays intact. Of course, if the boundary condition involves a
discontinuity, see Section 3.2.5, and the boundary is accordingly partitioned into segments, then
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the matrix Q of (3.34) also needs to be recomputed when the partition Γ = Γ1 ∪ Γ2 changes,
i.e., when the locations of the discontinuities move. However, for a given fixed partition the
corresponding system (3.21), (3.34) will be appropriate for any boundary condition of type
(3.31), i.e., any combination of the Dirichlet, Neumann, and Robin boundary conditions.

A natural example where the foregoing split of the algorithm into two relatively indepen-
dent parts may be useful is electromagnetic scattering off conducting materials coated with
dielectrics. It is known that the dielectric coating on the surface of a conductor can have a
considerable effect on electromagnetic scattering, and even when the shape of the scatterer
stays the same and only the coating changes the radar cross section can still vary substantially,
see, e.g., [45]. In turn, various types of coating (pure dielectric, lossy dielectric, dielectric with
magnetic losses, etc.) can be modeled by the Leontovich [46] or, equivalently, impedance [47,48]
boundary conditions. In the framework of the second order governing equations (Helmholtz-
type) those become Robin boundary conditions. The proposed approach will therefore enable
an efficient numerical simulation of electromagnetic scattering and radar cross section for a
fixed conducting shape that may be fully or partially coated by different types of dielectrics.

3.3 Numerical results

3.3.1 Solution of multiple problems at low cost

The algorithm of the method of difference potentials described in Chapter 3.2.7 allows com-
putationally inexpensive solutions to problems which share certain similar features. The most
expensive component of the algorithm is the application of the projection operator, which
involves the inverse G(h) of the finite difference operator L(h), i.e., the solution of the discrete
AP (2.52) by finite differences, see Section 3.1.1. Building the matrix QH of (3.22) that enters
into the BEP (3.4) (or, in the inhomogeneous case, (3.5)) requires that the projection operator
be applied to each basis function once it has been extended to the discrete boundary γ. In the
case Γ = Γ1 ∪ Γ2, in which QH takes the form (3.34), this amounts to a total of 4(N + 1)
applications of the projection [cf. the number of Chebyshev basis functions in (3.33)].5 for the
Chebyshev basis. Additionally, for inhomogeneous problems there will be two applications of
the inverse operator G(h) which are associated with the right-hand side f of (3.1a), one for the
term TrG(h)f , and one more to compute the inhomogeneous contribution to the extension, QI .
One final application of the projection is required to obtain the final numerical solution since it

5For simplicity, we take N1 = N2 = N throughout our simulations. The exception to this is the study of
Section 3.3.7, in which we study the effects of taking fewer basis functions to restore accuracy on coarse grids
and give more careful consideration to determining a suitable number of basis functions, including the allowance
of different numbers of basis functions for each segment of the boundary (i.e., N1 6= N2). We also use different
numbers of basis functions on each segment for the the inhomogeneous problems of Section 3.3.8
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is expressed by the generalized Green’s formula (3.6) once the system for the basis coefficients
has been solved via QR.

Therefore, provided that matrix QH is unchanged, the overall computational cost of solving
a new problem is small since the projection operator need not be applied again to the basis func-
tions. All of the following simulations are for the Helmholtz equation with constant coefficients,
which means that, due to the structure of the chosen AP (2.51), an efficient solution by the
separation of variables can be used; however, because our interest is more generally in variable-
coefficient equations we implement a direct LU solver for the AP. Alternatively, one may solve
the AP with an iterative method. Regardless of the specific solver employed, the algorithm is
more efficient when a previously computed basis can be reused since this drastically reduces
the number of APs that need to be solved for the new problem. In particular, for problems that
differ only in the right-hand sides f in (3.1a), the cost will be that of the 2 projections associated
with the right-hand side and 1 more to obtain the final solution. If only the boundary condition
(3.1b) is changed, then only the 1 projection to obtain the final solution by the difference
potential is needed.

Such savings can be achieved by the design of the numerical examples of Sections 3.3.4-
3.3.10, and we demonstrate these savings when applicable.

3.3.2 Parameters of the computational setting

For all of the following test cases, the domain Ω of the interior BVP for the constant coefficient
Helmholtz equation (3.1a) is a disk of radius 1 centered at the origin, i.e., the boundary curve
Γ is a circle.

Auxiliary Problem The auxiliary domain is a square of side length 2.2 also centered at the
origin. The simulations are conducted using the fourth-order accurate compact finite difference
scheme (2.33) on a series of Cartesian grids containing 64, 128, 256, 512, 1024, and 2048 cells
uniformly spaced in each direction. Scheme (2.33) is supplemented by the Sommerfeld-type
boundary conditions (2.50a-2.50b) at the left and right edges of the auxiliary square, and a
Dirichlet condition (2.44a) at its top and bottom edges. In particular, note that the circular
boundary Γ is not aligned with the Cartesian grid of the FD scheme.

Basis Functions As mentioned in Section 3.2.3, the number of basis functions N used to
expand ξξξΓ by formula (3.17) may be chosen grid-independent.6 Specifically, it is taken as a num-

6While we always use one and the same notation N , it represents 2N + 1 functions for the Fourier basis,
e−iNθ, . . . , 1, . . . , eiNθ, and N functions for the Chebyshev basis, T0(x), . . . , TN−1(x). Moreover, as ξξξΓ is a two-
component vector function, we need a separate system of basis functions for each component, see (3.17). This
makes the overall dimension equal to 2(2N + 1) for the Fourier basis and 2N for the Chebyshev basis.
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ber sufficiently large to represent the given boundary functions α, β, and φ, see formulae (3.24)
and (3.31), to a prescribed tolerance, 10−10. This boundary tolerance is selected beforehand to
exceed any accuracy that we expect to obtain on all grids. When the boundary coefficients and
data are continuous and piecewise-smooth, the corresponding Fourier or Chebyshev expansions
converge fast on each interval of smoothness, and the resulting number N is relatively small.
Altogether, this is a robust and universal strategy that allows us to choose the boundary repre-
sentation once and for all and then control the final accuracy exclusively by adjusting the grid
size. An alternative approach would be to perform a series of computations on the coarsest grids
first in order to determine the accuracy needed and then extrapolate out the requirement for
finer grids — this approach is given in detail and implemented in Section 4.3. However, for the
simulations of this chapter we have chosen to keep the same number of basis functions for all
grids as a matter of simplifying the analysis of the computational complexity, as it allows for an
unbiased measure of the scaling of the problem relative to the grid size, see Sections 3.3.3–3.3.5.

We realize that this strategy may result in an excessive number of basis functions since the
boundary expansion needs to be only as accurate as the finite difference scheme for a particular
grid. In other words, for coarser grids one can take fewer basis functions (3.16) and still achieve
the greatest accuracy of which the finite difference scheme is capable of on that grid. Moreover,
taking too many basis functions on coarse grids may actually result in a loss of accuracy. Indeed,
if the dimension of the basis on the boundary is higher than the number of nodes |γ|, then the
least-squares problems derived from (3.21) are no longer overdetermined. Additionally, for the
Chebyshev basis functions in particular, the density of the roots of the polynomials near the
endpoints can result in a loss of accuracy without the system (3.21) becoming overdetermined.
In this case, the oscillations of the basis functions on the continuous boundary Γ are finer
than the resolution afforded by the discrete boundary γ. The effect of this phenomenon is
that two basis functions may become indistinguishable on the discrete boundary, leading to a
degradation of linear independence in the discrete space, and this subsequently introduces error
into the least-squares solution of (3.21). We have observed this loss of accuracy on coarse grids
in Sections 3.3.3–3.3.5, giving the appearance there of an inflated convergence rate. Therefore, in
Section 3.3.6 we demonstrate that reducing the number of basis functions on these coarse grids
restores the accuracy of the least-squares solution. This provides for not only more accurate, but
also more efficient computation on the coarser grids. Moreover, in Section 3.3.7 we demonstrate
that further efficiency can be achieved on every grid in asymmetrically split boundaries Γ =
Γ1 ∪ Γ2 by allowing for a different number of basis functions on each segment.

Errors For the examples of Sections 3.3.3–3.3.8, we take k = 10 in the Helmholtz equation
(3.1a), and consider a known smooth exact solution. In the homogeneous problems of Sec-
tions 3.3.3–3.3.7 and 3.3.9, the test solution used will always be a plane wave, while various
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test solutions are presented for the inhomogeneous problems of Section 3.3.8, and applying
the Helmholtz operator L to the test solutions determines the different right-hand sides f .
Subsequently, because the exact solution is known, the error is computed in the maximum
norm on the set of nodes N+ (see Figure 3.1) and the convergence rate is determined by taking
a binary logarithm of the ratio of the errors on successively doubled grids.

We also choose a wavenumber of k = 5 in Section 3.3.10 and k = 10 in Section 3.3.11.
However, for these problems the exact solution is not known. Therefore, in these cases the con-
vergence is assessed by evaluating the maximum norm of the difference between the numerical
solutions obtained on pairs of consecutive grids.

Chebyshev endpoints For the examples of Sections 3.3.4–3.3.9, the circle is decomposed
into two arcs which meet, by design, at the points of discontinuity of the Robin coefficients,
with independent Chebyshev bases on each arc. The same is done at the points of discontinuity
in the Dirichlet or Neumann data in Sections 3.3.10-3.3.11. In doing so, the trace of the solution
on each arc of the circle is represented separately by a set of Chebyshev basis functions.7 To
avoid computing the derivatives of the Chebyshev functions near the endpoints, we implement
a Chebyshev basis on the extended interval, as described in Section 3.2.6. In doing so, the “gap”
ε is estimated as follows. The “worst term” in the extension operator (3.7) applied to a given
a Chebyshev basis function on Γ will be that with the highest normal derivative, because it
translates into the highest tangential derivative according to (3.12–3.13). The highest tangential
derivative is of order four, and it contains the problematic term (1−x2)7/2 in the denominator8

(see Section 3.2.6). Given that the machine precision is on the order of 10−16, we seek ε such that
(1−x2)7/2 6 10−10 when |x| > 1−ε to provide a rough estimate. This yields ε > 0.0007, and thus
we have conservatively chosen ε = 0.001 for our computations. This ensures that no calculations
of the derivatives of the Chebyshev basis functions will occur within the problematic region near
the endpoints x = ±1. By comparing the results of simulations in Section 3.3.5 (Chebyshev basis
on an extended interval with ε = 0.001) with those in Section 3.3.9 (an unmodified Chebyshev
system, i.e., with ε = 0), we demonstrate that the approach of Section 3.2.6 indeed provides
a very efficient remedy for the “near-singular” behavior of the Chebyshev derivatives at the
endpoints.

7Those bases could have different dimensions, as we demonstrate in Section 3.3.7. The larger of the two arcs
may require more basis functions than the smaller, but we have, for simplicity, used the same number of basis
functions N on each arc. In this case, the overall number of basis functions is 4N , i.e., 2N per one arc.

8Recall, since Chebyshev functions are polynomials, neither they nor their derivatives can become singular.
In other words, the apparent zero in the denominator is canceled by the same order of zero in the numerator.
However, this l’Hôpital-type indeterminacy makes numerical computation of the derivatives at the endpoints
difficult.
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Computational complexity The computer implementation of the entire algorithm is done
in MATLAB. To assess the computational complexity, we measure the run time for different
parts of the code. The overall computation time is dominated by applying the projection op-
erator (3.3) to the extended basis functions to form the matrix Q of (3.22), since this requires
the expensive step of solving the discrete AP (2.52), i.e., inverting the finite difference oper-
ator L(h). By representing L(h) as a matrix, this is accomplished using MATLAB’s built-in
sparse direct solver that employs the LUPQR factorization. The factorization itself is obviously
performed only once and then applied to multiple right-hand sides consisting of the extended
basis functions. Hence, the cost of building the matrix Q is split into two parts: the cost of LU
factorization and the cost of multiple backward substitutions.

Once the matrix Q has been formed, the next step is to take into account the boundary con-
dition via the supplemental equations (3.29) or (3.35) and to solve the resulting overdetermined
linear system in the sense of least squares. This is done by means of the QR factorization, and
we measure the corresponding CPU times for the various cases that we investigate. Finally, once
all the coefficients of expansion (3.17) have been determined, one needs to solve the discrete AP
(2.52) one more time to obtain the solution u = PN+ξγ , where ξγ = ExξξξΓ is the reconstructed
density (for inhomogeneous problems, an additional term is needed along with the potential
so that u = PN+ξγ + G(h)B (h)f (h), see (3.6)). This amounts to performing one additional
backward substitution (and one more in the inhomogeneous case for the term G(h)B (h)f (h)),
as the LUPQR factorization of the matrix L(h) stays the same.

Altogether, the cost of QR, as well as that of the final solution, is much smaller than the cost
of building the matrix Q . This implies that if Q is available, changing the boundary condition
or right-hand side f of the BVP (3.1) and solving the resulting problem can be done very
economically, see Section 3.3.1. Note that the same matrix Q can be used in Sections 3.3.4-
3.3.9, with the technical exception that for the inhomogeneous problems of Section 3.3.8 this
Q corresponds to the homogeneous component QH , and the inhomogeneous component QIf

must be formed for each new right-hand side f , which requires one additional backsolve of
the matrix L(h) to obtain. For clarification, note that the Q-system in the inhomogeneous case
(3.23) requires both the terms G(h)B (h)f (h) and QIf , which each require one back solve of L(h).
This represents the total of additional computation required for an inhomogeneous problem as
opposed to a homogeneous problem since the quantity G(h)B (h)f (h) can then be saved and
reused for computing the final solution by the potential (3.6) rather than being re-computed.
The final set of experiments regarding the effect of the order of the discontinuity on convergence
in Sections 3.3.10-3.3.11 has discontinuities at θ = 0, π; accordingly, these tests required that
the boundary be partitioned differently. This implies that the Chebyshev bases will change,
and so a different matrix Q was computed for the first problem of those simulations and was
subsequently reused in all remaining tests.
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3.3.3 Smooth periodic Robin boundary condition via Fourier basis

Consider the Robin boundary condition (3.24) with the smooth, periodic coefficients α(θ) =
ecos θ and β(θ) = esin θ. We “reverse engineer” the data φ(θ) for the Robin condition (3.24)
by evaluating the known exact solution u = eikx, k = 10, and its normal derivative on the
boundary. The results presented in Table 3.1 fully corroborate the theoretical design rate of
grid convergence for the proposed methodology (fourth order). We also see that the dominant
part of the computational cost is indeed the formation of the matrix Q of (3.22). In Sections 3.3.4
and 3.3.5, we show how one can efficiently solve a range of boundary value problems using the
same matrix Q .

Table 3.1: Grid convergence and execution times for the smooth periodic Robin boundary
condition (3.24). N = 32 in formula (3.17), and ψ

(0)
n (θ) = ψ

(1)
n (θ) = einθ in formula (3.16).

Grid Error Conv. rate Build Q time QR time PN+ξγ time
64×64 9.44 · 10−3 - 0.66 0.095 0.0024

128×128 5.92 · 10−4 4.00 2.47 0.13 0.012
256×256 3.69 · 10−5 4.00 11.13 0.21 0.081
512×512 2.29 · 10−6 4.01 55.07 0.38 0.30

1024×1024 1.44 · 10−7 3.99 228.35 0.76 1.42
2048×2048 8.25 · 10−9 4.12 1193.07 2.52 6.68

3.3.4 Mixed Dirichlet/Neumann boundary conditions using Chebyshev basis

In this section, as well as in Section 3.3.5, we consider a partition of the boundary into two arcs:
Γ = R1 ∪R2, where R1 = {0 6 θ < 2π/3} and R2 = {2π/3 6 θ < 2π}. Following Section 3.2.5,
we assign a separate Chebyshev basis to R1 and R2. The dimension of the basis is chosen the
same for both arcs: N = 67. The combination of the partition Γ = R1∪R2 and the basis defines
the matrix Q for each grid (via the extension Ex of each basis function and the application of
the projection (3.3)). In Table 3.2, we present the CPU times needed to build this matrix Q on
every grid that we use. In doing so, we distinguish between the time for LUPQR factorization
(done once per grid) and the time for 4N backward substitutions (see footnote7).

We emphasize that the same matrix Q will be used to solve all boundary value problems in
this section, as well as in Section 3.3.5. We also note that instead of Gaussian elimination, we
could have used a more efficient direct solver for the AP, based on the separation of variables
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Table 3.2: Time to build the matrix Q of (3.22).

Grid LUPQR time 4N back solves time
64×64 0.06 1.16

128×128 0.27 4.28
256×256 1.59 20.38
512×512 8.17 91.03

1024×1024 46.5 1 471.11
2048×2048 1516.08 2563.69

and FFT. Nonetheless, we chose to use LU decomposition because it permits an easy extension
to variable coefficients and this data serves as a cost analysis for that case.

Let us now specify a mix of the Dirichlet and Neumann conditions on separate parts of the
boundary Γ by choosing the Robin coefficients in formula (3.31) to be either 1 or 0. Specifically,
we let α(1)(θ) = 1 and β(1)(θ) = 0 for θ ∈ R1 and α(2)(θ) = 0 and β(2)(θ) = 1 for θ ∈ R2. As
in Section 3.2.5, we reduce the general linear system (3.35) to its simplified form (3.36-3.37).
The exact solution is taken as u = eikx with k = 10, and is used along with its normal derivate
to supply the boundary data φ(1)(θ) and φ(2)(θ). Table 3.3 shows the grid convergence results
and CPU times for QR and for the final solution. As the overall solution remains smooth, the
method yields fourth-order accuracy even though the boundary conditions are mixed.

Table 3.3: Grid convergence and execution times for the mixed Dirichlet/Neumann boundary
conditions for u = eikx with k = 10. ψ(0)

n = ψ
(1)
n = Tn in formula (3.16), and the dimension of

the Chebyshev basis on each arc is N = 67.

Grid Error Conv. rate QR time PN+ξγ time
64×64 5.47 · 102 - 0.011 0.0030

128×128 3.52 · 10−1 10.60 0.017 0.013
256×256 1.61 · 10−5 14.41 0.035 0.065
512×512 8.10 · 10−7 4.32 0.070 0.32

1024×1024 5.26 · 10−8 3.95 0.17 1.44
2048×2048 3.05 · 10−9 4.11 0.46 7.43

Next, we change the boundary data φ(1)(θ) and φ(2)(θ) by choosing a different exact solution:
u = eiky with k = 10. The matrix Q remains unaffected, and the corresponding convergence
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and timing results are presented in Table 3.4. By comparing the CPU times in Tables 3.3 and
3.4 with those in Table 3.2 we see that once the matrix Q is available, changing the boundary
condition and solving a new boundary-value problem becomes an inexpensive task.

Table 3.4: Grid convergence and execution times for the mixed Dirichlet/Neumann boundary
conditions for u = eiky with k = 10. ψ(0)

n = ψ
(1)
n = Tn in formula (3.16), and the dimension of

the Chebyshev basis on each arc is N = 67.

Grid Error Conv. rate QR time PN+ξγ time
64×64 2.26 · 103 - 0.011 0.0094

128×128 2.27 · 10−1 13.05 0.072 0.012
256×256 9.71 · 10−6 14.74 0.17 0.071
512×512 3.56 · 10−7 4.77 0.12 0.31

1024×1024 2.26 · 10−8 3.98 0.16 1.43
2048×2048 1.29 · 10−9 4.15 0.43 7.50

3.3.5 Piecewise smooth Robin boundary condition via Chebyshev basis

In this section, we continue to use the same pair of Chebyshev bases and the same matrix Q

as timed in Table 3.2, but apply them to the Robin boundary condition (3.31) with piecewise
smooth coefficients. First, we take α(1)(θ) = ecos θ, β(1)(θ) = arctan θ + 1 for θ ∈ R1, and
α(2)(θ) = e2 sin θ, β(2)(θ) = 1 for θ ∈ R2. It is easily checked that these coefficients exhibit
both jump discontinuities and discontinuities in the first derivative at θ = 0 and θ = 2π/3.
The boundary data φ(1)(θ) and φ(2)(θ) are again generated by the smooth exact solution u =
eikx with k = 10, and the linear system (3.21) for the Chebyshev coefficients of u and ∂u

∂n is
supplemented by equations (3.35). The data in Table 3.5 corroborate the fourth-order rate of
grid convergence.
Again, as in Section 3.3.4, changing the boundary condition does not require a re-computation of
Q and amounts only to doing another least squares solve and another final solve, see Table 3.6.
Note that the QR times for the piecewise smooth Robin cases (Tables 3.5 and 3.6) are longer
than those for the mixed Dirichlet/Neumann cases (Tables 3.3 and 3.4). This is because in the
mixed Dirichlet/Neumann case we are solving a reduced system (3.21), (3.36), (3.37), whereas
in the piecewise Robin case we are solving a full system (3.21) supplemented by equations
(3.35), which implies a larger dimension.

Altogether, we see that the method provides the design fourth order accuracy for all the test
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Table 3.5: Grid convergence and execution times for the piecewise smooth Robin boundary
condition (3.31) with α(1)(θ) = ecos θ, β(1)(θ) = arctan θ + 1 and α(2)(θ) = e2 sin θ, β(2)(θ) = 1.
The exact solution is u = eikx, k = 10. ψ(0)

n = ψ
(1)
n = Tn in formula (3.16). The dimension of

the Chebyshev basis on each arc is N = 67.

Grid Error Conv. rate QR time PN+ξγ time
64×64 1.92 · 103 - 0.49 0.0023

128×128 1.62 · 10−1 13.53 0.56 0.012
256×256 2.36 · 10−5 12.74 0.80 0.076
512×512 1.23 · 10−6 4.26 1.47 0.31

1024×1024 8.28 · 10−8 3.89 2.72 1.44
2048×2048 4.73 · 10−9 4.13 5.39 7.52

Table 3.6: Grid convergence and execution times for the piecewise smooth Robin boundary
condition (3.31) with α(1)(θ) = esin θ, β(1)(θ) = (θ + 3)2 and α(2)(θ) = log(θ + 3), β(2)(θ) =√
θ + 3. The exact solution is u = eikx, k = 10. ψ(0)

n = ψ
(1)
n = Tn in formula (3.16). The

dimension of the Chebyshev basis on each arc is N = 67.

Grid Error Conv. rate QR time PN+ξγ time
64×64 1.95 · 103 - 0.58 0.0024

128×128 4.65 · 10−1 12.03 0.68 0.012
256×256 1.81 · 10−5 14.64 0.89 0.076
512×512 1.05 · 10−6 4.11 1.58 0.31

1024×1024 6.58 · 10−8 4.00 2.85 1.44
2048×2048 3.07 · 10−9 4.15 5.57 7.29

cases that we have investigated (Tables 3.3–3.6), and also that, once the matrix Q has been
pre-computed (Table 3.2), taking a different boundary condition from a rather broad class can
be done at a low computational cost.

3.3.6 Reducing the number of basis functions for coarser grids

In this example, we repeat the first case of Section 3.3.5 with the same parameters except that
we alter the number of basis functions for each grid. This alleviates the loss of accuracy on
the coarser grids (see the errors for the 64×64 and 128×128 grids in Tables 3.3–3.6) and also
reduces the overall execution times. Recall that the loss of accuracy on coarser grids occurs
because the vertical dimension |γ| of the matrix Q of (3.22) may be smaller than its horizontal
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dimension if too many basis functions are taken. In fact, it may occur even in the case where
the system is still formally overdetermined, i.e., its vertical dimension exceeds the horizontal
dimension, but only slightly. A possible explanation is that when the grid γ is coarse, the
feet of the normals dropped from γ to Γ that are used for building the extension Ex by
formulae (3.7–3.8) do not provide a sufficient resolution for the oscillations of the Chebyshev
basis functions, which become increasingly oscillatory with N . This effectively implies that two
different continuous basis functions may become practically indistinguishable when extended
from Γ to γ, which renders the matrix Q almost rank-deficient. Every time the grid is refined
the vertical dimension |γ| roughly doubles, the resolution on Γ increases accordingly, and the
foregoing adverse phenomenon quickly vanishes. But in the beginning of our sequence of grids,
it manifests itself by a higher-than-expected convergence rate as the matrix Q becomes “taller”
but maintains the same width.

We alleviate this issue by choosing N as follows. From our previous computations (Table 3.5)
we know that the error for the final grid will be∼ 3×10−9. Hence, we replace our initial tolerance
that N should approximate α, β, and φ within 10−10 by 3×10−9, and this determines the value
of N for the finest grid. For this problem this yields N = 62 as the number of basis functions
needed for the finest grid. To maintain a fourth-order convergence rate, the ratio of the errors
on successive grids should be 16. Therefore, for each coarsening of the grid we multiply the
tolerance for that grid by 16. Using this rule-of-thumb, we estimate a smaller but sufficient
number of basis functions. In doing so, the matrix Q obtained in Section 3.3.4 does not have
to be re-computed; we simply drop the columns that correspond to the basis functions that are
not included into a reduced set. The results are presented in Table 3.7.

Table 3.7: Grid convergence and execution times for the piecewise smooth Robin boundary
condition (3.31) of Table 3.5 with all the same parameters but fewer basis functions on coarser
grids.

Grid N Error Conv. rate Tolerance QR time
64×64 43 1.28 - 5.00 · 10−3 0.13

128×128 48 9.67 · 10−4 10.37 3.10 · 10−4 0.21
256×256 53 2.01 · 10−5 5.59 1.94 · 10−5 0.40
512×512 57 1.23 · 10−6 4.03 1.21 · 10−6 0.84

1024×1024 61 8.27 · 10−8 3.89 7.57 · 10−8 2.06
2048×2048 65 4.71 · 10−9 4.13 4.73 · 10−9 4.88

The errors for the coarse grids with 64×64 and 128×128 nodes in Table 3.7 are several orders
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of magnitude smaller than their counterparts in Table 3.5, with the errors for the remaining
finer grids being almost identical. With no other distinction between this section and the first
example of Section 3.3.5, we have demonstrated that taking unnecessarily many basis functions
on Γ relative to the grid dimension can cause a loss of accuracy, and that the grid refinement
removes this loss of accuracy. Note also that the QR times in Table 3.7 are somewhat shorter
than those in Table 3.5. This is because the horizontal dimensions of the corresponding matrices
Q are smaller.

We emphasize that the approach for choosing N that we have used in this section is some-
what artificial because it uses an a posteriori estimate of the error on the finest grid. What
may be done instead is to obtain an a posteriori estimate on the coarsest grid first. Once this
is done, we can, rather than working backwards by multiplying the error by 16 each iteration
from the finest grid down to the coarsest, divide the error of the coarsest grid by a factor of 16
to determine the expected error for finer grids and the appropriate tolerance for the truncation
of the basis. Since the computational time required on the coarsest grid will be much less than
on the finest, this is an efficient means of determining the number of basis functions and may
serve as an alternative to prescribing an initial tolerance. This is the strategy which we have
developed and implemented in Section 4.3 and [26] [see the discussion in Section 4.1].

3.3.7 Increased efficiency by using different numbers of basis functions on

individual segments of a split boundary

One should note that the number of basis functions required to achieve a given resolution on
each piece the grid boundary may differ when any asymmetry exists either in the geometry
or in the splitting itself. The problems of this chapter are completely symmetric with respect
to the boundary shape, since we are using a disk centered at the origin; however, we have
in Sections 3.3.4-3.3.6 (and also in Sections 3.3.8-3.3.10) chosen a splitting that is uneven: Γ1

is only half the length of Γ2, and thus we should expect to need roughly half as many basis
functions on Γ1 to offer the same level of accuracy as on Γ2.

Up to this point, we have chosen for simplicity to take the same number of basis functions
on each piece of the boundary shape, but the expressions of Section 3.2.5 make no assumption
of having the same number of basis functions on each segment of the boundary9.

We now repeat the same test of Section 3.3.6, but with the modification that the tolerance
is used to determine the appropriate number of basis functions on each segment independently.

9In fact, we have even more freedom in the number of basis functions than is described there since the two-
component vector may even have different dimensions for each component of the Cauchy data. There may be
cases in which this is desirable, such as when the boundary condition is so simple as to require only a known
finite series expansion (e.g., zero Dirichlet boundary conditions would not need more than 1 component in the
first entry of the basis pair). This is an avenue left to future study.
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The same tolerances for the truncation of the Chebyshev series of the known boundary data
utilized in Table 3.7 are now used to determine the number of basis functions on each segment
of the discrete boundary. As expected, the results, summarized in Table 3.8, verify that the
same level of accuracy is obtained with substantially fewer basis functions. Moreover, the errors
on the coarsest grids are reduced even further.

Note that we already have available the matrix Q due to our prior investigations of this same
problem in the preceding sections, and so we are able to perform the following computations
efficiently by simply removing columns that coincide with the unused basis functions rather
than recomputing Q . Nevertheless, these results demonstrate that, when solving a new problem
with concern for efficiency of the overall algorithm, allowing the number of basis functions to
be different at each segment of the boundary can result in substantial computational savings.
What Table 3.8 fails to quantify is the computational time that could have been saved by not
computing the “extra” columns of the matrix Q when it was initially computed in the example
of Section 3.3.4. As noted in Section 3.3.1, the inclusion of each basis function requires a solution
of an AP, which amounts to solving a finite difference problem and is the most computationally
expensive step of the algorithm. These potential computations savings would be manifest in
reducing the number of back solves to build the matrix Q in Table 3.2 from 4N to the smaller
sum 2(N1 +N2). According to the results of Table 3.8, for this particular problem that would
mean 2(38 + 65) = 206 back solves instead of the 4 ∗ 67 = 268 back solves that were initially
done, a savings of about 23%.

Table 3.8: Convergence data for the piecewise smooth Robin boundary condition (3.31) of
Tables 3.5 and 3.7 with a split basis. The total number of basis functions used is 2(N1 +N2)

Grid (N1, N2) Error Conv. rate Tolerance QR time
64×64 (25,43) 1.17 · 10−2 - 5.00 · 10−3 0.041

128×128 (28,48) 3.21 · 10−4 5.19 3.10 · 10−4 0.093
256×256 (31,53) 1.87 · 10−5 4.10 1.94 · 10−5 0.22
512×512 (33,57) 1.23 · 10−6 3.93 1.21 · 10−6 0.51

1024×1024 (36,61) 8.24 · 10−8 3.90 7.57 · 10−8 1.31
2048×2048 (38,65) 4.72 · 10−9 4.13 4.73 · 10−9 3.05

Moreover, a comparison of the number of basis functions required on each arc from the
second column of Table 3.8 shows that the number of basis functions needed on the smaller arc
Γ1, which is half the size of Γ2, is about 58% of what is required on Γ2 - a little more than half.
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We may also compare this problem to that of Section 3.3.3, where we found that using a Fourier
basis with N = 32 - meaning 2(2N +1) = 130 basis functions total - was sufficient for the finest
grid of Table 3.1. This implies that, while we have now two independent bases on Γ, we do not
outright double the number of basis functions required, as we posited in the concluding remarks
of Section 3.2.5, but instead the overall number of basis functions required increases by a factor
of about 1.6. We leave a more exhaustive comparison on the effect of further subdivision of the
boundary shape on the number of basis functions as an avenue for future study.

3.3.8 Inhomogeneous Problems

In Tables 3.9-3.10 below, we choose a test solution u and obtain f by analytically applying the
differential operator L of (3.1a). The right-hand side f as well as its derivatives (which, since we
assume f is given analytically, we may freely compute) are then used to compute the additional
terms of the discrete BEP (3.5), the inhomogeneous contribution to the extension (3.14) which
manifests in the linear system for the basis coefficients (3.23), and the inhomogeneous term
of the potential (3.6) to compute the final solution. We specify a simple Dirichlet boundary
condition along the entire circular boundary.

We have already shown by the analysis in Tables 3.2-3.8 that the solution of problems which
differ only in the boundary condition can be computed efficiently as long as the same basis may
be used. In the present section, we further demonstrate the flexibility of the method and its
efficiency for solving problems with different source terms, i.e., different right-hand sides f of
the BVP (3.1a). Even though this boundary condition has no discontinuities we may continue
to use the same splitting of the Chebyshev basis into two segments. This highlights the fact
that, supposing one wishes to solve problems on the same domain with multiple right-hand sides
and with a host of different boundary conditions that may have singularities at certain known
locations, there is no need to compute and maintain multiple different configurations of splits
for the basis functions. Instead, one and the same splitting which has segments meeting at each
of the known potential points of discontinuity can be used for all such problems, regardless of
whether discontinuities are present at all, some, or none of those points. As in Section 3.3.7,
we choose the number of basis functions on each boundary segment independently with an
adequate truncation tolerance for the Chebyshev expansion of both the boundary conditions
and right-hand side.

The final column of Tables 3.9-3.10 lists the time required to perform the two projections
which pertain only to inhomogeneous problems. We continue to use the same set of Chebyshev
basis functions and, having already computed more than enough of them, we simply reduce
the number of columns of Q . Therefore, the total computation time consists of the solution to
the Q system by least squares, two applications of the projection to the right-hand side f of

68



(3.1a), and the final projection to obtain the solution to the problem (see the final column of
Tables 3.3-3.6).

Table 3.9: Inhomogeneous problem with right-hand side generated by the test solution u =
r2eikx with Dirichlet boundary conditions.

Grid (N1, N2) Error Conv. rate QR time RHS Projection time
64×64 (23,41) 1.45 · 10−3 - 0.032 0.0091

128×128 (26,45) 8.94 · 10−5 4.02 0.073 0.029
256×256 (28,50) 5.62 · 10−6 3.99 0.17 0.12
512×512 (31,54) 3.53 · 10−7 3.99 0.50 0.49

1024×1024 (34,59) 2.22 · 10−8 3.99 1.18 2.20
2048×2048 (36,63) 1.21 · 10−9 4.20 2.64 9.58

Table 3.10: Inhomogeneous problem with right-hand side generated by the test solution u =
r3eikx with Dirichlet boundary conditions.

Grid (N1, N2) Error Conv. rate QR time RHS Projection time
64×64 (23,41) 8.99 · 10−4 - 0.034 0.028

128×128 (26,45) 5.59 · 10−5 4.01 0.074 0.029
256×256 (28,50) 3.54 · 10−6 3.98 0.17 0.12
512×512 (31,54) 2.21 · 10−7 4.00 0.51 0.49

1024×1024 (34,59) 1.37 · 10−8 4.01 1.28 2.26
2048×2048 (36,63) 1.33 · 10−9 3.36 2.71 9.49

3.3.9 Loss of accuracy due to non-treatment of Chebyshev endpoints

In Section 3.2.6, we noted that the position of the grid nodes γ relative to the continuous
boundary Γ may require computing the Taylor extension (3.7) of the Chebyshev basis functions
very close to (or even precisely at) the Chebyshev endpoints, resulting in a loss of accuracy.
We demonstrate this phenomenon, as well as the effectiveness of our method in eliminating it,
by re-computing the first example of Section 3.3.5. We do so without the use of any technique
to correct the poorly conditioned computation of Chebyshev derivatives near the endpoints,

69



thereby allowing us to observe the disruption of convergence. We again divide the circle into
two arcs: R1 = [0, 2π/3) and R2 = [2π/3, 2π), and set the same Robin boundary condition (3.31)
with the coefficients α(1)(θ) = ecos θ, β(1)(θ) = arctan(θ) + 1 for θ ∈ R1 and α(2)(θ) = e2 sin θ,
β(2)(θ) = 1 for θ ∈ R2. The boundary data φ(1)(θ) and φ(2)(θ) are still supplied from the exact
solution u = eikx with k = 10. The results are presented in Table 3.11.

Table 3.11: Computation of the same case as that in Table 3.5, but with no special treatment
of the Chebyshev endpoints. ψ(0)

n = ψ
(1)
n = Tn in formula (3.16), and the dimension of the

Chebyshev basis on each arc is N=67.

Grid Error Conv. rate
64×64 2.53 · 103 -

128×128 3.49 · 10−1 12.82
256×256 2.90 · 10−4 10.23
512×512 1.37 · 10−4 1.08

1024×1024 9.73 · 10−6 3.82
2048×2048 2.56 · 10−5 -1.39

Comparing the results in Table 3.11 to those in Table 3.5, we observe an immediate decline
in the convergence rate for all the grids from 256x256 and finer, which culminates in a complete
loss of convergence for the finest grid. Since the example of Section 3.3.5 has precisely the
same parameters as the current example except that an extended interval for the Chebyshev
basis was used in Section 3.3.5, we conclude that the approach of Section 3.2.6 indeed removes
the difficulties that would otherwise arise from computing the derivatives of the Chebyshev
functions near the endpoints.

3.3.10 Boundary data that lead to solutions with singularities

Discontinuities in the boundary condition will result in singularities of the solution. Because
finite difference schemes are only consistent on classical solutions, this will cause the convergence
rate to suffer. We design the following experiments to document this decay in the convergence
rate as motivation for the singularity subtraction procedure of Chapter 4 which will restore the
accuracy of the method in cases where singularities in the solution arise from discontinuous
boundary conditions.

In each of the following experiments, we use the same partition of the circle as before:
R1 = [0, 2π/3) and R2 = [2π/3, 2π). However, we no longer consider a given smooth exact
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solution. We rather specify the boundary data independently on each of the two arcs, R1 or R2,
allowing for discontinuities at the points θ = 0 and θ = 2π/3. This gives rise to near-boundary
singularities in the solution. We also choose k = 5 in the Helmholtz equation (3.1a).

On each of the two arcs, R1 or R2, we set either a Dirichlet or Neumann boundary condition.
The data we specify on R2 always correspond to a plane wave with k = 5 traveling in the x
direction. For this wave, u(x, y) = eikx, the Dirichlet data are u = eikr cos θ and the Neumann
data are ∂u

∂n = ik cos θeikr cos θ, where r = 1 because Γ is a circle of radius 1. The data on
R1 are intentionally specified with a mismatch, and we consider mismatches of three different
types: in the amplitude of the wave, in its traveling direction, and in its phase. In the case of
a mismatch in the amplitude, the data specified on R1 correspond to the wave u(x, y) = 2eikx,
which yields u= 2eikr cos θ and ∂u

∂n = 2ik cos θeikr cos θ on Γ in the Dirichlet and Neumann case,
respectively. In the case of a mismatch in the traveling direction, we provide two examples: one
with the wave that travels in the y direction and the other with the wave that travels at an
angle of 1 radian with respect to the positive x axis. For the wave traveling in the y direction,
u(x, y) = eiky, on the arc R1 we have u = eikr sin θ and ∂u

∂n = ik sin θeikr sin θ, r = 1, for the
Dirichlet and Neumann data, respectively. For the wave traveling at an angle of 1 radian, we
have u = eikr cos(θ+1) and ∂u

∂n = ik cos(θ+1)eikr cos(θ+1). Finally, for the experiments in which the
waves are out of phase, we have chosen a phase shift of 0.7 radians, yielding u = ei(kr cos(θ)+0.7)

and ∂u
∂n = ik cos(θ)ei(kr cos(θ)+0.7) on R1. The numerical results for each type of the mismatch

subject to different boundary conditions (Dirichlet, Neumann, and mixed) are summarized in
Tables 3.12, 3.13, 3.14, and 3.15. For comparison, we have the continuous case in Table 3.16,
i.e., the case with no mismatch, in which the plane wave u(x, y) = eikx with k = 5 supplies the
data for both R1 and R2.

As the exact solutions to these problems (except the formulation with no mismatch) are
not available, we cannot evaluate the error by comparing the numerical solution to the actual
solution on the grid. Instead, we introduce a grid-based metric, which compares the numerical
solutions on successive grids that have common nodes. Specifically, we structure our Cartesian
grids so that each refinement retains all of the nodes of the previous grid, and then compute the
maximum norm of the difference between the two successive solutions on the nodes of the coarser
grid. Since this measure involves a pair of grids, Tables 3.12–3.16 display the finer of the pair
for each resulting error (i.e., the coarsest grid on which we compute is 64 × 64). Additionally,
we found that the error spikes at the nodes of the discrete boundary γ which are closest to
the discontinuities at θ = 2π/3 and θ = 0, and that the maximum norm when these points
are included does not exhibit significant convergence. Therefore, as an additional modification,
we compute the maximum error strictly on the interior of the disk or, more precisely, inside
the circle of radius 0.8. We also note that changing the maximum norm to l2 norm makes no
substantial difference in the observed convergence.
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From Tables 3.12–3.16 we see that the singularities substantially slow down the convergence.
In all the cases with mismatches, the rate of grid convergence is at most first order. This
behavior is expected because the scheme essentially loses its consistency near the singularity.
The relationship between the regularity of the boundary condition and the loss of convergence
is further investigated in Section 3.3.11, and the purpose of Chapter 4 is to restore accuracy
when the solution lacks regularity at the boundary.

Table 3.12: Grid convergence for boundary data with amplitude mismatch and either Dirichlet,
Neumann, or mixed boundary conditions.

Dirichlet: R1 and R2 Neumann: R1 and R2 Dirichlet: R1, Neumann: R2
Grid Error Rate Error Rate Error Rate

128×128 2.60 · 10−2 - 2.64 · 10−2 - 1.88 · 10−2 -
256×256 1.35 · 10−2 0.95 1.61 · 10−2 0.71 1.08 · 10−2 0.80
512×512 9.91 · 10−3 0.44 1.00 · 10−2 0.69 5.67 · 10−3 0.93

1024×1024 4.80 · 10−3 1.05 1.73 · 10−3 2.53 2.84 · 10−3 1.00
2048×2048 2.87 · 10−3 0.74 3.62 · 10−3 -1.06 1.68 · 10−3 0.75

Table 3.13: Grid convergence for boundary data with direction mismatch (plane wave traveling
in the y direction) and either Dirichlet, Neumann, or mixed boundary conditions.

Dirichlet: R1 and R2 Neumann: R1 and R2 Dirichlet: R1, Neumann: R2
Grid Error Rate Error Rate Error Rate

128×128 1.42 · 10−2 - 6.23 · 10−2 - 2.32 · 10−2 -
256×256 1.67 · 10−2 -0.24 2.85 · 10−2 1.13 1.44 · 10−2 0.69
512×512 1.04 · 10−2 0.69 1.67 · 10−2 0.77 6.11 · 10−3 1.24

1024×1024 5.33 · 10−3 0.96 4.68 · 10−3 1.84 6.08 · 10−3 0.01
2048×2048 2.86 · 10−3 0.90 6.92 · 10−3 -0.56 2.70 · 10−3 1.17
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Table 3.14: Grid convergence for boundary data with direction mismatch (plane wave traveling
at 1 radian with respect to the positive x direction) and either Dirichlet, Neumann, or mixed
boundary conditions.

Dirichlet: R1 and R2 Neumann: R1 and R2 Dirichlet: R1, Neumann: R2
Grid Error Rate Error Rate Error Rate

128×128 4.86 · 10−2 - 8.22 · 10−2 - 2.94 · 10−2 -
256×256 2.49 · 10−2 0.96 2.70 · 10−2 1.61 1.75 · 10−2 0.75
512×512 1.90 · 10−2 0.39 1.49 · 10−2 0.86 8.25 · 10−3 1.08

1024×1024 9.25 · 10−3 1.04 7.05 · 10−3 1.08 6.61 · 10−3 0.32
2048×2048 5.17 · 10−3 0.84 7.81 · 10−3 -0.15 3.08 · 10−3 1.10

Table 3.15: Grid convergence for boundary data with phase mismatch (waves out of phase by
0.7 radians) and either Dirichlet, Neumann, or mixed boundary conditions.

Dirichlet: R1 and R2 Neumann: R1 and R2 Dirichlet: R1, Neumann: R2
Grid Error Rate Error Rate Error Rate

128×128 1.78 · 10−2 - 1.81 · 10−2 - 1.27 · 10−2 -
256×256 9.24 · 10−3 0.95 1.10 · 10−2 0.71 7.41 · 10−3 0.78
512×512 6.80 · 10−3 0.44 6.86 · 10−3 0.69 3.89 · 10−3 0.93

1024×1024 3.29 · 10−3 1.05 1.19 · 10−3 2.53 1.94 · 10−3 1.00
2048×2048 1.97 · 10−3 0.74 2.48 · 10−3 -1.06 1.15 · 10−3 0.75

Table 3.16: Grid convergence for boundary data with no mismatch and either Dirichlet, Neu-
mann, or mixed boundary conditions.

Dirichlet: R1 and R2 Neumann: R1 and R2 Dirichlet: R1, Neumann: R2
Grid Error Rate Error Rate Error Rate

128× 128 6.62 · 10−5 - 1.35 · 10−4 - 6.17 · 10−5 -
256× 256 4.18 · 10−6 3.99 1.66 · 10−5 3.02 4.02 · 10−6 3.94
512× 512 2.62 · 10−7 3.99 1.14 · 10−7 7.19 2.53 · 10−7 3.99

1024× 1024 1.65 · 10−8 3.99 7.10 · 10−9 4.00 1.57 · 10−8 4.01
2048× 2048 1.30 · 10−9 3.66 5.64 · 10−10 3.65 1.24 · 10−9 3.66
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3.3.11 Effect of boundary data with varying degrees of continuity on con-

vergence

The following set of experiments was conducted in order to systematically explore the effects
of discontinuous boundary data on convergence of the scheme by solving problems with sin-
gularities of various orders (e.g., discontinuous boundary data, then continuous data with a
1st derivative discontinuity, etc.). The singularity subtraction method of Chapter 4 employs
an asymptotic expansion of the behavior of the solution near the singular point. Just as we
expect the convergence rate to improve as the boundary data become increasingly smooth, we
expect that we will also require fewer terms in the asymptotic expansion of the solution near
the singular point in Chapter 4 to restore the design convergence rate.

In the experiments of Section 3.3.10, we specified boundary data on separate segments of the
boundary which were, individually, the actual data of a test solution, but which were not from
the same test solution, resulting in discontinuities at the segment endpoints. In this experiment,
we design a series of boundary data with decreasing degrees of continuity at the segment
endpoints. Let Γ be split into the segments Γ1 = [0, π) and Γ2 = [π, 2π) with a Chebyshev
basis with N = 67 on each segment and the wavenumber k = 10 in the Helmholtz equation
(3.1a). As the exact solutions are not known, the same grid convergence metric employed in
Section 3.3.10 is used to compute the errors in Tables 3.17-3.18.

The following boundary data will be specified on Γ1 and Γ2 as either Dirichlet data on
both parts or Neumann data on both parts, so that a discontinuity of the actual solution or its
normal derivative is guaranteed. The first set of boundary data is as follows:

φ
(0)
1 = cos θ, θ ∈ [0, π),

φ
(0)
2 =− cos θ, θ ∈ [π, 2π),

(3.43)

where the superscript denotes the order of discontinuity - i.e., for the data (3.43) the order of
discontinuity is said to be of order zero at the points θ = 0, π since the data itself experiences a
jump discontinuity at these points. Boundary data with subsequent orders of discontinuity are
obtained by the following formulae:

φ
(n)
1 =

1
n!

sinn θ, θ ∈ [0, π),

φ
(n)
2 =− 1

n!
sinn θ, θ ∈ [π, 2π),

(3.44)

where we let n = 1, 2, 3. Observe that the nth set of boundary data is everywhere continuous
in its first n − 1 derivatives but experiences a jump discontinuity in its nth derivative at the
points θ = 0, π. In the following tables, the error corresponding to the nth set of boundary data,
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n = 0, 1, 2, 3, is denoted by en, and the corresponding convergence rate by CRn.
The results of Tables 3.17-3.18 demonstrate clearly that for both Dirichlet and Neumann

problems, convergence is quickly restored as the regularity of the boundary data increases, with
steady fourth order convergence being achieved once the data have at least two continuous
derivatives. The numerical examples of Section 4.3 follow a similar progression from being
less regular to more regular, and we observe in that chapter that fewer singular terms must
be accounted for as the regularity of the problem increases. As regularity at the boundary is
restored in Tables 3.17-3.18, so is the consistency of the finite difference scheme and thus the
convergence rate.

Table 3.17: Error and convergence rate for Dirichlet boundary conditions with 0th up to 3rd

order discontinuity using boundary data (3.43-3.44)

Grid e0 CR0 e1 CR1 e2 CR2 e3 CR3

128 30.96 - 1.05 - 61.09 - 3.31 · 10−2 -
256 0.298 6.70 2.46 · 10−3 8.73 2.20 · 10−4 18.08 1.04 · 10−5 11.64
512 0.236 0.33 7.50 · 10−4 1.71 1.39 · 10−5 3.98 8.24 · 10−7 3.65

1024 0.367 -0.64 7.81 · 10−4 -0.06 8.74 · 10−7 3.99 5.15 · 10−8 4.00
2048 0.224 0.71 1.43 · 10−4 2.45 2.48 · 10−7 1.82 3.24 · 10−9 3.99

Table 3.18: Error and convergence rate for Neumann boundary conditions with 0th up to 3rd

order discontinuity using boundary data (3.43-3.44)

Grid e0 CR0 e1 CR1 e2 CR2 e3 CR3

128 1.41 - 2.72 - 0.528 - 0.534 -
256 3.72 · 10−2 5.24 1.25 · 10−3 11.08 5.82 · 10−6 16.47 2.28 · 10−4 11.20
512 1.90 · 10−2 0.97 9.43 · 10−5 3.73 7.85 · 10−8 6.21 1.45 · 10−5 3.97

1024 9.55 · 10−3 0.99 1.62 · 10−5 2.54 1.11 · 10−8 2.82 8.95 · 10−7 4.02
2048 4.76 · 10−3 1.00 3.91 · 10−6 2.05 2.01 · 10−9 2.47 5.65 · 10−8 3.99

The results of Tables 3.17-3.18 show that convergence is restored when the solution to the
Helmholtz equation (3.1) becomes classical, i.e., has 2 continuous derivatives. Given that the
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FD scheme (2.33) is 4th order, one may expect that 4 continuous derivatives of the solution to
the BVP (3.1) would be required to restore convergence. In fact, the problem which we solve
by FD is actually the AP (2.51), not the BVP (3.1). Therefore, it is sufficient that solution to
the AP (2.51) have 4 continuous derivatives in order to maintain the 4th order design rate of
the FD scheme (2.33). In the method of difference potentials, the discontinuity at the boundary
curve Γ of the BVP (3.1) manifests itself as the right-hand side g of the AP (2.51). Since the
boundary conditions of the AP (2.51) are unchanged by the boundary conditions of the interior
BVP (3.1), the right-hand side g is the only source of discontinuity in the AP (2.51). Therefore,
if the boundary data of the BVP (3.1) have 2 continuous derivatives, then the right-hand side
g of the AP (2.51) will have 2 continuous derivatives, and the solution of the AP (2.51) will
have 4 continuous derivatives.

3.4 Discussion and Remarks

We have investigated theoretically and demonstrated experimentally the capability of the
method of difference potentials to handle complex boundary conditions, such as variable coef-
ficient Robin, mixed, and discontinuous. The governing Helmholtz equation was approximated
on a regular Cartesian grid by an economical fourth order accurate compact finite difference
scheme. For a number of test cases that involved a non-conforming circular boundary and
various boundary conditions, we have been able to recover the design fourth-order accuracy
of the scheme provided that the overall solution was sufficiently smooth. The accuracy was
not adversely affected by either staircasing [4, 5] or the non-standard nature of the boundary
conditions.

The approach that we use to reduce the original problem from its domain to the boundary is
based on Calderon’s operators. It automatically guarantees the well-posedness of the resulting
boundary formulation as long as the original problem is well posed, regardless of the type of the
boundary condition. Moreover, it is very important that when changing either the boundary
condition or the right-hand side f of the Helmholtz equation only a particular component of the
overall numerical algorithm changes, whereas most of it remains unaffected (see Section 3.2.7).
Accordingly, the computational cost associated with solving a new problem for a new boundary
condition or with a different source term is small provided that the same basis may be used.
In contrast, a change of the boundary condition in the classical method of boundary integral
equations often requires a complete change of the algorithm. We note that there is another group
of techniques based on finite differences/volumes as opposed to integral equations, and designed
to handle non-aligned boundaries/interfaces: immersed boundary [49], immersed interface [50],
ghost fluid [51, 52], and embedded boundary [53, 54] methods. To the best of our knowledge,
there are no reported uses in the literature of those methods for anything but simple Dirichlet,
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Neumann, or interface conditions (continuity of the solution and its normal flux), changing the
boundary condition requires major changes to the algorithm [54], and extension to higher than
second order accuracy is not straightforward.

We have also shown that when the overall solution is not smooth and has a singularity at the
location where the coefficients and/or data in the boundary conditions are discontinuous, then
the convergence of the method slows down, as expected, because the finite difference scheme
loses its consistency. As the regularity of the boundary data increases, consistency of the finite
difference scheme is gradually restored. In Chapter 4, we circumvent the loss of consistency for
problems with singular boundary data by first modifying the problem so that the boundary data
are sufficiently regular before solving it by the method of difference potentials. The locations of
the singular points along the boundary for these problems are known, and these singular points
naturally become the endpoints for the partitioning of the boundary curve to ensure that the
basis representations of the modified boundary data converge rapidly.
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Chapter 4

Singularity Subtraction

As we have seen, the near-boundary singularities of the solution due to discontinuities in the
boundary conditions result in a substantial reduction of accuracy for the method of Chapter 3. It
is well known that the solution may also develop a singularity due to the geometric irregularities
of the boundary itself, e.g., domains with corners. In many cases, the type of the singularity
is known, at least to the leading order, see, e.g., [55, 56, 57, 58, 19, 59, 60, 61, 62, 63, 64], as
well as the monograph [65]. In such cases, the singular component can be subtracted, and the
problem can be solved with respect to the remaining part of the solution. The latter should have
higher regularity, and thus enable an improved convergence of the numerical approximation.
Combined with the method of difference potentials, this approach was previously implemented
for the Laplace equation in [21] and the Chaplygin equation in [20]. None of these efforts used
high-order computational methods.

In this chapter, we show how the design accuracy for the combined methodology of Chapter 3
can be restored when the solution has such near-boundary singularities [26]. The idea is to
subtract out several leading terms in the expansion of the solution near the singular point, and
subsequently solve only for the remaining regular component. In developing the expansion, we
follow the approach earlier proposed in [19] and modify it to accommodate singular points on
curved boundaries (rather than only straight lines) and to maintain a high-order of accuracy.
Following this procedure provides a consistent approach because the resulting system of ODEs
for the coefficients of the singular expansion will always have the same structure regardless of
the specific geometry of the problem.

For simplicity, the boundary condition (3.1b) will be either of Dirichlet (lΓ = 1) or Neumann
(lΓ = ∂

∂n ) type. The methods presented hereafter extend trivially to the case where (3.1b) is of a
mixed type (Dirichlet/Neumann). The boundary data in (3.1b) are now intentionally chosen to
be discontinuous. Namely, the function φΓ = φΓ(s), where s is the arc length, will have either
jump discontinuities in the function itself or else jump discontinuities in its first or second
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derivative with respect to s.
The aforementioned discontinuities in φΓ or its derivatives will cause the solution u to

possess singularities at the corresponding boundary points. The analysis of Section 4.1 allows
us to obtain an approximation, uS , to those near-boundary singularities (to several leading
orders). Then, by substitution into the original homogeneous BVP (3.1), uR = u − uS will
satisfy the following inhomogeneous BVP:

LuR = − LuS
def
= f, x ∈ Ω, (4.1a)

lΓuR = φΓ − lΓuS
def
= ψΓ, x ∈ Γ. (4.1b)

We refer to the new BVP (4.1) as the “regularized” problem since it will now be regular up to
the degree with which uS matches the boundary singularities of u.

For simplicity, we consider the case where the domain Ω is a disk of radius R=1 centered at
the origin. In particular, we will seek to restore accuracy to problems similar to the numerical
study of Section 3.3.11 which have singularities of varying derivative orders at the points θ =
0, π. From the standpoint of treating singularities that result from discontinuous boundary
data, this choice presents no loss of generality. The regularized BVP (4.1) will have sufficient
regularity that it can be solved without loss of accuracy by the method of difference potentials
described in Chapter 3.

4.1 Constructing Singular Functions at the Boundary

In this section, we will show how to transition from the original BVP (3.1), for which the solution
u may have singularities, to the new BVP (4.1), for which the solution is sufficiently smooth
so that it can be approximated by means of a high-order accurate scheme. For definiteness, we
will first analyze the case of a Dirichlet boundary condition (3.1b) in problem (3.1), lΓ = 1.
The Neumann and mixed cases are treated similarly, and in Sections 4.2 and 4.3 we present the
setup and the results of computations for both Dirichlet and Neumann boundary conditions.

We allow the function φΓ(s) on the right-hand side of (3.1b) and/or its derivatives to have
jump discontinuities at some locations on the boundary Γ. Though it is not the focus of the
present work, it is of note that these methods can similarly treat singularities resulting from
corners in the domain, allowing for the treatment of boundary shapes that are only piecewise
smooth. Discontinuities of either type generally reduce the regularity of the solution in the
vicinity of the corresponding boundary points, as some derivatives of the solution become
unbounded. This, in turn, slows down the convergence of finite difference methods, see Ta-
bles 3.12-3.18. Hereafter, we describe a consistent and general approach to restoring the rate of
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convergence affected by the reduced regularity of the solution. It exploits an analytically-derived
asymptotic expansion of the solution near the “irregular” boundary points.

Specifically, let u0, u1, . . . , un be the first n+1 consecutive terms of an asymptotic expansion
of the exact solution u to the BVP (3.1) in the vicinity of a singular boundary point s = s0.
Suppose that each term uj of this expansion is more regular than the previous term, uj−1, i.e.,
that uj has bounded derivatives up to a certain order which is higher than the order of the
highest bounded derivative of uj−1. Subtracting the sum of n + 1 such terms from the exact
solution u, we arrive at a new function v = u− (u0 + u1 + . . .+ un), for which we formulate a
new BVP [cf. BVP (4.1)]: {

Lv = −L(u0 + u1 + . . . un),

v|Γ = φΓ(s)− (u0 + u1 + . . . un)|Γ.
(4.2)

In general, the right-hand side −L(u0 + u1 + . . . un) in (4.2) is nonzero because neither the
individual terms uj of the expansion nor their sum are expected to satisfy the homogeneous
Helmholtz equation. Our goal is to choose the terms uj in such a way that the function v will
have no singularities up to at least the derivative of order n, in which case problem (4.2) will
be referred to as regularized.

By taking an appropriate value of n, one can make the solution v of the regularized problem
(4.2) sufficiently smooth so that a given finite difference scheme will converge to v with the
design rate. Then, by adding the analytically-derived sum (u0 +u1 + . . .+un) to the computed
solution v, one would restore the design order of accuracy for the overall discrete approximation
of u.

In the remainder of this section, we derive the asymptotic form of the solution to the
Helmholtz equation near the singular points at the boundary. Specifically, in Section 4.1.1
we follow [19] and solve equation (3.1a) near the vertex of a 2D plane wedge with straight
boundaries. We focus on the Dirichlet case and describe the Neumann case more briefly. In
Section 4.1.2, we use a conformal mapping to generalize the results of Section 4.1.1 for the case
of boundaries with nonzero curvature, which permits high-order approximation. As an example,
in Section 4.1.3 and Appendix B we consider both Dirichlet and Neumann data when Γ is a
unit circle, although our techniques can accommodate more complex geometries as well.

4.1.1 Straight boundaries

Consider the Helmholtz equation (3.1a) in polar coordinates centered at the vertex of a 2D
wedge with straight sides and angle ω. Let ρ and θ denote the polar radius and polar angle,
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respectively. Then, equation (3.1a) takes the form(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2
+ k2 (ρ, θ)

)
u (ρ, θ) = 0. (4.3)

Note though that unlike in (3.1a), we allow for the spatial variation of the wavenumber k in
equation (4.3), because it proves useful for the analysis of curved boundaries in Section 4.1.2.
Indeed, after the conformal mapping that we use to straighten the boundaries, the constant-
coefficient Helmholtz equation transforms into a variable-coefficient Helmholtz equation. Thus,
we must necessarily treat the variable-coefficient case.
Equation (4.3) is supplemented by the boundary conditions on each side of the wedge:

u (ρ, 0) = F (ρ), u (ρ, ω) = H(ρ). (4.4)

We assume that the data in (4.4) can be expanded into the power series1:

F (ρ) =
∞∑
j=0

fjρ
j , H(ρ) =

∞∑
j=0

hjρ
j . (4.5)

In doing so, expansions (4.5) are not required to match at the vertex of the wedge. In other
words, the respective coefficients fj and hj in (4.5) may differ from one another. It is precisely
this mismatch between the boundary data that will give rise to the singularities in the solution.

In addition, we assume that a convergent expansion exists for k2(ρ, θ) as well:

k2 (ρ, θ) =
∞∑
j=0

kj(θ)ρj . (4.6)

Representations (4.5), (4.6) for the boundary data and the wavenumber, respectively, will be
needed for constructing the asymptotic expansion of the solution u = u(ρ, θ) near the singularity.
Following [19], we seek an asymptotic expansion of the solution to (4.3) in the form of a series

u (ρ, θ) =
∞∑
j=0

ρj (Aj(θ) ln ρ+Bj(θ)). (4.7)

Substituting expansions (4.6) and (4.7) into equation (4.3) and requiring that the resulting
coefficients in front of all terms ρj and ρj ln ρ, j = 0, 1, 2, . . ., be independently equal to zero,

1We have not deemed it necessary for this study, but it may in some cases be convenient to allow the power
series to have a more general form in which the exponent of r is fractional, as in the work of Fox and Sankar [19].
This does not affect the ODE systems for Aj and Bj given in equations (4.8) and (4.9)
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we obtain two systems of second order ODEs for Aj(θ) and Bj(θ):

A′′0 = 0,

A′′1 + 12 ·A1 = 0,
...

A′′m+2 + (m+ 2)2Am+2 = −
m∑
j=0

km−jAj , m = 0, 1, 2...,

Aj(0) = Aj(ω) = 0, j = 0, 1, 2, ...,

(4.8)



B′′0 = 0,

B′′1 + 12 ·B1 = −2A1,

...

B′′m+2 + (m+ 2)2Bm+2 = −
m∑
j=0

km−jBj − 2(m+ 2)Am+2, m = 0, 1, 2...,

Bj(0) = fj , Bj(ω) = hj , j = 0, 1, 2, ...

(4.9)

In formulae (4.8) and (4.9), primes denote differentiation with respect to θ, and the boundary
conditions for Bj(θ) at θ = 0 and θ = ω in (4.9) are obtained with the help of expansions (4.5).

Systems (4.8) and (4.9) are coupled and should therefore be solved concurrently, with in-
dividual equations addressed in the consecutive order starting with those for A0(θ), B0(θ).
Schematically, we represent the solution sequence as follows: A0(θ) → B0(θ) → A1(θ) →
B1(θ)→ A2(θ)→ B2(θ)→ . . .. At each step of this sequence, j = 0, 1, 2, . . ., we solve an ODE
of the type {

Ψ′′j + j2Ψj = µj(θ),

Ψj(0) = aj , Ψj(ω) = bj .
(4.10)

In the case that Ψj = Aj , the boundary conditions are the homogeneous conditions of (4.8) (i.e.,
aj = bj = 0), and (4.10) becomes a Sturm-Liouville problem. In this case, the right-hand side
µj(θ) in (4.10) involves lower-order coefficients Ai(θ), i < j, in the form of a convolution with
the coefficients kj(θ). Likewise, when Ψj = Bj the boundary conditions are given by aj = fj

and bj = hj from (4.9), and the right-hand side µj(θ) includes both lower order coefficients
Bi(θ), i < j, and the coefficient Aj(θ) of the same order.

We will now study the solvability of problem (4.10). To do so, it will be sufficient to consider
only the Sturm-Liouville problem with aj = bj = 0. Indeed, for system (4.8) the boundary
conditions are homogeneous anyway, and for system (4.9) they can be easily made homogeneous

82



by subtracting an arbitrary (smooth) function Ψ̃j(θ) from the solution such that Ψ̃j(0) = aj ,
Ψ̃j(ω) = bj , and adjusting the right-hand side accordingly. Hence, the reduction of problem
(4.10) to the case aj = bj = 0 presents no loss of generality. At the same time, it considerably
simplifies the analysis and discussion below.

The Fredholm alternative holds for the the Sturm-Liouville problem (4.10) for any given j

and aj = bj = 0. It means that one of the following two scenarios transpires:

1. Problem (4.10) has a unique solution, which takes place if ω 6= π lj , l = 1, 2, . . .. This is
a non-resonant case: the Sturm-Liouville operator Lj ≡ d2

dθ2 + j2 subject to zero Dirichlet
conditions will not resonate since the second derivative operator has no non-trivial eigen-
functions; the inverse operator (Green’s function) L−1

j exists; and the problem LjΨj = µj ,
Ψj(0) = Ψj(ω) = 0, can be uniquely solved.

2. The resonant case. At ω = π lj , l = 1, 2, . . ., there exists a nonzero eigenfunction of
the second derivative operator of the Sturm-Liouville operator Lj . This eigenfunction is
merely Ψ̂j(θ) = sin(jθ), up to a constant factor. In this case, problem (4.10) has a solution
if and only if the solvability condition holds2:

ω∫
0

µj(θ) sin jθdθ = 0. (4.11)

The solution is given by

Ψj(θ) = Cj sin jθ +
1
j

θ∫
0

{
cos jθ′ sin jθ − sin jθ′ cos jθ

}
µj(θ′)dθ′, (4.12)

and is not unique, since the coefficient Cj in front of the eigenfunction sin jθ is arbi-
trary and changing it will violate neither the differential equation nor the zero boundary
conditions.

Next, it will be convenient to represent the wedge angle as ω = απ, where α may be either a
rational number or an irrational number. Let us first assume that α is irrational. Then, problem
(4.10) falls into the first proposition of the Fredholm alternative. The coefficients Aj(θ) are all
identically equal to zero, Aj(θ) ≡ 0, j = 0, 1, 2 . . . , since the boundary conditions are zero
and the solution is unique. The coefficients Bj(θ) are uniquely determined and in general are

2To verify this, consider the following chain of equalities: 0 =
ωR
0

Ψ(θ)LjΨ̂(θ)dθ =
ωR
0

Ψ̂(θ)LjΨ(θ)dθ =

ωR
0

Ψ̂(θ)µj(θ)dθ, where we have used the integration by parts and taken into account that LjΨ̂(θ) = 0 and

LjΨj = µj .
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not equal to zero identically due to the nonzero boundary conditions. Consequently, for the
angles ω = απ with α irrational, we obtain a regular expansion of the solution with no singular
logarithmic terms.

If α is a rational number, i.e., α = l
N , where l and N are positive integers with a greatest

common factor of 1, then for those jk for which jk
l
N is also a positive integer,

jk
l

N
= ck ∈ N , (4.13)

problem (4.10) falls into the second proposition of the Fredholm alternative. For these jk,
the coefficients Ajk(θ) = C

(A)
jk

sin jkθ are eigenfunctions of Ljk , up to an arbitrary factor C(A)
jk

.
Substituting a given Ajk(θ) into the right-hand side of the equation (4.9) for Bjk(θ) and applying
the solvability condition (4.11), we obtain an algebraic equation for the constant C(A)

jk
that can

be uniquely solved.
On the other hand, the coefficient Bjk(θ) appears only partially determined. While the

second term in (4.12) is defined unambiguously, the first term contains the eigenfunction sin jkθ
with an arbitrary constant Cjk in front of it. Therefore, in the case of a rational α we obtain
nonzero, uniquely determined coefficients Ajk(θ) for the singular terms ρjk ln ρ, and partially
determined coefficients Bjk(θ) for ρjk . The successive solution of the coupled systems (4.8),
(4.9) can be schematically shown as

A0(θ)→ B0(θ)→ . . .→ Aj(θ)→ Bj(θ)→ . . .→ Ajk(θ)
↑
→ Bjk(θ)

↓
←−−−
C

(A)
jk

→ . . . (4.14)

Diagram (4.14) emphasizes that at each step of the sequence the problem falls into one of the
two propositions of the Fredholm alternative and either proceeds straightforwardly in the non-
resonant case (like the j-th step in (4.14)) or makes a back loop in the resonant case (like the
jk-th step).

We can also see from (4.13) that the first non-zero singular term Ajk(θ)ρjk ln ρ appears
in the series at j1 = N . So, as N increases the expansion becomes more regular because the
singularity moves to higher-order terms. In the limit N →∞, l→∞, the ratio l/N approaches
an irrational number as long as it remains finite and irreducible. Therefore, the singularity
disappears and we arrive at the case of an irrational α discussed above.

In the case of a Neumann problem, the boundary conditions are set for the normal derivatives
on the sides of the wedge. For the previously described geometry, this is the same as specifying
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1
ρ
∂u
∂θ at θ = 0 and θ = ω:

1
ρ

∂u(ρ, 0)
∂θ

= F (ρ) =
∞∑
j=0

fjρ
j ,

1
ρ

∂u(ρ, ω)
∂θ

= H(ρ) =
∞∑
j=0

hjρ
j ,

or, equivalently,

∂u(ρ, 0)
∂θ

= ρF (ρ) =
∞∑
j=0

fjρ
j+1,

∂u(ρ, ω)
∂θ

= ρH(ρ) =
∞∑
j=0

hjρ
j+1. (4.15)

Expansions (4.15) suggest that one can seek a solution in the form of a series

u(ρ, θ) =
∞∑
j=0

ρj+1 (Aj(θ) ln ρ+Bj(θ)) (4.16)

which differs from (4.7) only in that the respective powers of ρ are increased by one. Expansion
(4.16) yields the systems similar to (4.8-4.10), but with different coefficients in the equations and
with Neumann boundary conditions in the counterpart of the Sturm-Liouville problem (4.10).
The procedure for solving these coupled systems (for Aj(θ) and Bj(θ)) remains the same as for
the Dirichlet case.

We can also consider a more general class of the boundary data, with expansions that include
non-integer powers:

F (ρ) = ρβ
∞∑
j=0

fjρ
j , H(ρ) = ργ

∞∑
j=0

hjρ
j , 0 < β, γ < 1.

In this case the overall problem should be split into two subproblems using linear superposition.
The first subproblem will have the expansion

u(1)(ρ, θ) =
∞∑
j=0

ρj+β (Aj(θ) ln ρ+Bj(θ)),

with F (1)(ρ) = F (ρ) and H(1)(ρ) = 0 as the boundary data. Likewise, the second expansion
will have the form

u(2)(ρ, θ) =
∞∑
j=0

ρj+γ (Aj(θ) ln ρ+Bj(θ)),

with F (2)(ρ) = 0 and H(2)(ρ) = H(ρ), respectively.
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4.1.2 Curved boundaries

In this section, we build an asymptotic expansion of the solution to the Helmholtz equa-
tion (3.1a): (

∂2

∂x2
+

∂2

∂y2

)
u(x, y) + k2u(x, y) = 0 (4.17)

near a point on the curved (i.e., non-straight) boundary where the data undergo a discontinuity.
We assume that the domain Ω is a disk of radius R centered at the origin on the (x, y)-plane.3

Introducing the polar coordinates (r, ϕ), we can write the boundary condition (3.1b) as follows:

u|r=R = φΓ(ϕ). (4.18)

The function φΓ(ϕ) and/or its derivatives may have jump discontinuities for some given values
of ϕ. Furthermore, the wavenumber k in equation (4.17) may, in general, vary with coordinates,
k = k(x, y), and we have chosen a constant wavenumber only for simplicity, since, regardless,
it becomes a variable quantity after the conformal mapping that we introduce below.

Let ϕ = 0 be one of the points on the boundary where φΓ(ϕ) and/or its derivatives is
discontinuous.4 We build an asymptotic expansion to the solution of equation (4.17) in the
vicinity of (R, 0). For that purpose, we use a conformal mapping z = x+ iy 7→ ζ = ξ + iη that
reduces the problem to the case we have analyzed previously, in Section 4.1.1. The fractional
linear transform

ζ = i
R− z
R+ z

(4.19)

maps the disk of radius R onto the half-plane η ≥ 0 in the (ξ, η)-coordinates (see Figure 4.1). The
upper (lower) semi-circle is mapped onto the positive (negative) real semi-axis ξ > 0 (ξ < 0).
The point (R, 0) is mapped into the origin (0, 0) of the (ξ, η)-plane whereas the opposite point
(−R, 0) corresponds to ±∞ on the real axis ξ.

It is well known that under a general conformal mapping ζ = ζ(z), the Helmholtz equation
(4.17) transforms as follows:(

∂2

∂ξ2
+

∂2

∂η2

)
u(ξ, η) +

∣∣z′(ζ)
∣∣2k2u(ξ, η) = 0, (4.20)

where z = z(ζ) is the function inverse to ζ = ζ(z), and where a prime denotes differentiation
3Note that we have chosen R = 1 for simplicity; this will be our choice for the numerical simulations of

Section 4.3 as well. Moreover, the choice of a circular shape in the first place is also only a matter of convenience
as it makes the conformal mapping that we are going to use particularly simple (fractional linear). Otherwise,
it does not present a loss of generality, and our technique can, in fact, address a singularity at the vertex of an
arbitrary wedge with curved sides.

4This assumption involves no loss of generality as we can always rotate the frame.

86



Figure 4.1: Conformal mapping (4.19).

(in the Cauchy-Riemann sense). For mapping (4.19), equation (4.20) becomes:(
∂2

∂ξ2
+

∂2

∂η2

)
u(ξ, η) +

4k2R2[
(ξ + 1)2 + η2

]2u(ξ, η) = 0. (4.21)

We observe that now the wavenumber varies as a function of ξ and η. The boundary condition
(4.18) for equation (4.21) is set on the real axis ξ (i.e., the axis η = 0):

u(ξ, 0) = f(ξ), (4.22)

where the function f(·) is obtained from the original φ(·) of (4.18) via the inverse transform
z = z(ζ). Any discontinuities of the boundary data at the point ϕ = 0 in (4.18) are therefore
translated to the point ξ = 0 after the mapping (4.19).

Next, we introduce polar coordinates ξ = ρ cos θ, η = ρ sin θ on the (ξ, η)-plane, see Fig-
ure 4.1, and recast equation (4.21) on the half-plane η > 0 in terms of ρ and θ. This yields the
Helmholtz equation in the form (4.3) with the variable wavenumber

k2(ρ, θ) =
4k2R2

[1 + ρ2 + 2ρ cos θ]2
, (4.23)

where the constant k is the physical wavenumber introduced in (4.17).
Thus, we have reduced the original problem (4.17-4.18) formulated on the disk Ω to the

Helmholtz equation with variable wavenumber (4.23) to be solved on the semi-plane 0 6 θ 6 π.
In the framework of Section 4.1.1, this semi-plane can be interpreted as a wedge with the angle

87



ω = π, and the location of singularity in the solution of equation (4.3), (4.23) will be ρ = 0.
Accordingly, boundary condition (4.22) on the ξ-axis is reformulated as two conditions on two
sides of the wedge:

u|θ=0 = f(ρ),

u|θ=π = f(−ρ).
(4.24)

Next, we express the variable wavenumber (4.23) in the form (4.6). To do so, we expand the
right-hand side of (4.23) as a Taylor series with respect to ρ and treat θ as a parameter:

k2(ρ, θ) = 4(kR)2︸ ︷︷ ︸
≡k0(θ)

+ (−16(kR)2 sin θ)︸ ︷︷ ︸
≡k1(θ)

ρ+ 8(kR)2(6sin2θ − 1)︸ ︷︷ ︸
≡k2(θ)

ρ2 + . . . (4.25)

and apply the approach of Section 4.1.1 to the plane wedge with the angle ω = π. Having
obtained the desired number of terms in the asymptotic expansion of the solution in polar coor-
dinates (ρ, θ), we transform them into the original (x, y) or (r, ϕ) coordinates using the inverse
of the conformal mapping (4.19). The relationship between (ρ, θ) and (x, y) under mapping
(4.19) is

ρ(x, y) =

√
(x−R)2 + y2

(x+R)2 + y2
, (4.26)

θ(x, y) =


arctan

R2 − x2 − y2

2Ry
, y > 0,

π + arctan
R2 − x2 − y2

2Ry
, y < 0.

(4.27)

As we see from (4.26), ρ(x, y) → 0 as x → R and y → 0. This is expected since the point
(R, 0) is mapped into the origin of the (ξ, η) frame, where ρ(ξ, η) =

√
ξ2 + η2 → 0 as ξ, η → 0.

On the other hand, when x → −R and y → 0, ρ(x, y) becomes unbounded since the point
(−R, 0) corresponds to ±∞ on the real axis ξ. Therefore, expansion (4.7), which is designed
to approximate the solution near (R, 0), becomes unbounded at the opposite point (−R, 0)
and cannot be used in the vicinity of this point even formally. The latter circumstance is
important from the implementation viewpoint (see the discussion in the description of Test 1
in Section 4.1.3).

Later, we will also need to consider the behavior of several functions of ρ and θ in the vicinity
of the point (R, 0). The corresponding analysis is straightforward in the (ξ, η) coordinates at
the origin (0, 0). Since the mapping (4.19) is analytic near this point, the analytical properties
of a given function established in the (ξ, η) coordinates will remain the same in the (x, y) or
(r, ϕ) coordinates. Omitting the simple calculations, we present the following results:

• The function θ(x, y) of (4.27) is undefined at the point (R, 0) and its first partial deriva-
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tives are unbounded there.

• Any combination of ρjθ, where j is a non-negative integer, has unbounded derivatives at
(R, 0) starting from order (j + 1).

• Products of the kind ρj sin jθ, ρj cos jθ, ρj sin((j − 2)θ), ρj cos((j − 2)θ) are regular with
all of their derivatives at (R, 0).

• The j-th derivative of the term ρj ln ρ is discontinuous at (R, 0).

Finally, we emphasize that a small region near the vertex of any curvilinear wedge can be
conformally mapped onto a small region near the vertex of a straight angle. Therefore, the same
approach presented here for the disk will also apply to more complicated geometries.

4.1.3 Test problems

In this section, we introduce six test problems with discontinuous boundary conditions set on
the circle of radius R. The first three tests correspond to the Dirichlet problem with a jump
discontinuity in (i) the boundary data itself, (ii) the first tangential derivative, and (iii) the
second tangential derivative. These Dirichlet problems share the same geometry, location of
singular points, and derivative order of singularities studied in the numerical experiments of
Section 3.3.11, but differ in the precise boundary condition used - in particular, the loss of the
design convergence rate was observed until the boundary data was twice differentiable. The
remaining three tests correspond to the Neumann problem with singularities in the boundary
data and their first and second tangential derivatives in the same sequence. We discuss Test 1 in
greater detail in this section as an example, with the full description of the other test problems
presented in Appendix B.

Test 1 We consider piecewise constant Dirichlet data for equation (4.3) with k2(ρ, θ) given
by (4.23):

u|r=R =

{
1, 0 < ϕ < π,

0, π < ϕ < 2π.
(4.28)

The Dirichlet data (4.28) undergo a unit jump at ϕ = 0 and at ϕ = π. After the transformation
(4.19), boundary condition (4.24) for the piecewise constant data (4.28) reads:

u|θ=0 = 1,

u|θ=π = 0.
(4.29)

Next, we solve equations (4.8-4.9) consecutively for the first five pairs of coefficients Aj(θ),
Bj(θ). According to (4.29), we take f0 = 1, h0 = 0, and fj = hj = 0 for j = 1, 2, 3, 4 in the
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expansion (4.5), while kj are given by (4.25). The solution we arrive at is the following:

A0(θ) = A1(θ) = A3(θ) ≡ 0,

A2 (θ) = −k
2R2

π
sin 2θ,

A4 (θ) =
k2R2

3π
[(

3− k2R2/4
)

sin 4θ + k2R2 sin 2θ
]
,

(4.30)

B0 (θ) =1− θ

π
, B1 (θ) = C

(B)
1 sin θ,

B2 (θ) =C(B)
2 sin 2θ + k2R2

(
1− θ

π

)
(cos 2θ − 1) ,

B3 (θ) =C(B)
3 sin 3θ − C(B)

1

1
2
k2R2 sin θ +

2k2R2

π

(
1
2

sin 2θ + 1− θ

π

)
sin θ,

B4 (θ) =C(B)
4 sin 4θ − C(B)

2

1
3
k2R2 sin 2θ + C

(B)
1

4
3
k2R2 sin4 θ

− k2R2

6π

[
(θ − π) (cos 2θ − 1)

((
k2R2 − 12

)
cos 2θ − k2R2

)
− 1

24
sin 2θ

(
3 cos 2θ

(
k2R2 − 12

)
− 16k2R2 − 96

) ]
.

(4.31)

For convenience, we introduce a shorthand notation for the truncated asymptotic expansion at
the point (R, 0) [cf. formula (4.7)]:

u(R,0) =
4∑
j=0

u
(R,0)
j , (4.32)

where
u

(R,0)
j = ρj (Aj(θ) ln ρ+Bj(θ)) . (4.33)

Again, in practice, ρ and θ in formulae (4.30-4.33) should be regarded as functions of the
coordinates (x, y) or (r, ϕ) on the disk z according to the transformations (4.26-4.27).

Each subsequent term in the sum (4.32) is more regular than the previous term, i.e., a
singularity appears in the derivatives of (at least) one order higher than that for the previous
term. Indeed, for each individual term (4.33) we can write with the help of (4.30-4.31) and the
considerations on regularity presented (in the form of a bulleted list) at the end of Section 4.1.2:

u
(R,0)
j = . . . ρj ln ρ︸ ︷︷ ︸

j-th derivative
is discontinuous

+ . . . ρjθ︸︷︷︸
(j+1)−th derivatives

are discontinuous

+ . . . (4.34)

90



In formula (4.34), the dots substitute for the unimportant multiplicative constants, as well as
for the regular terms. We thus see that the lowest order discontinuous derivative is the j-th
derivative that appears in the logarithmic term.

At this point, we can justify why we have truncated expansion (4.7) after j = 4, i.e., why
we took exactly five terms in expansion (4.32). According to (4.34), with five terms used in
(4.32) the difference v = u − u(R,0) =

∑
j>5 ρ

j (Aj(θ) ln ρ+Bj(θ)) will be free of the first five
low-order terms that may exhibit a singularity at the point (R, 0), and its expansion will start
with the terms ∝ ρ5, thereby guaranteeing the continuity of all derivatives up to the fourth
order.

Moreover, a direct calculation suggests that the terms u(R,0)
j of (4.33) with the coefficients

(4.30-4.31) do not satisfy the Helmholtz equation. Therefore the right-hand side of the regular-
ized problem (4.2) is nonzero in this case (which is also to be expected in general):

f = −Lu(R,0) = L(u− u(R,0)) = Lv. (4.35)

In (4.35), we have taken into account that Lu = 0 for the exact solution u. The degree of
regularity of f given by (4.35) is important from the standpoint of using the compact scheme
(2.33), because the five-node stencil applied to f on the right-hand side of (2.33) renders a central
difference approximation of the second derivatives of f , see [27, 30, 24]. Those derivatives are
guaranteed to be continuous if expansion (4.32) contains at least five terms.

To summarize, we differentiate v = u−u(R,0) four times altogether, with every differentiation
reducing the degree of regularity by one. Therefore, to maintain the continuity and boundedness
of all quantities employed by our numerical algorithm we need an expansion that is four times
continuously differentiable. This is facilitated by taking at least five terms in (4.32).

The boundary data for the regularized problem (4.2) are given by u− u(R,0)
∣∣
r=R

. For the
current test case, the asymptotic solution u(R,0) takes a very simple form on the circle r = R.
Indeed, the function θ(x, y) of (4.27) is equal either to zero (for y > 0) or to π (for y < 0) at
r = R. Therefore, according to (4.30)–(4.31), u(R,0) equals one on the upper semi-circle and
equals zero on the lower semi-circle. Taking into account the boundary conditions (4.28), we
conclude that the Dirichlet boundary data for the regularized problem are zero on the entire
circle r = R. In general (see Appendix B), the regularity of the boundary data for the regularized
problem matches that of the solution to the regularized problem.

It is also to be noted that the expansion of the truncation error for scheme (2.33) starts
with sixth-order derivatives of the solution, see [27, 30, 24]. To maintain their boundedness, we
would formally need to include additional terms into the sum (4.32) beyond j = 4; however, as
demonstrated by our numerical experiments in Section 4.3, taking five terms proves sufficient
for restoring the design fourth-order convergence rate of the method of difference potentials if
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applied to the regularized problem (4.2) or, equivalently, (4.1).
Finally, we note that the asymptotic expansion u(−R,0) at the opposite singular point (−R, 0)

can be obtained with no additional effort due to the symmetry of the original problem with
boundary data (4.28), and this is accomplished by an even reflection about the y axis: i.e.,
x 7→ −x, y 7→ y in the expressions (4.26-4.27). This symmetric configuration has been chosen
for simplicity; it presents no loss of generality. To suppress the singularities of the solution
at both singular points, (R, 0) and (−R, 0), one should use the sum u(R,0) + u(−R,0) of the
corresponding asymptotic expansions.

Implementation notes First of all, the coefficients Bj(θ) given by (4.31) include some un-
determined constants C(B)

j (see equation (4.12) and the discussion that follows). From the
standpoint of theory, this uncertainty presents no problem. In practice, however, we must decide
how to handle it.

We again refer to the bulleted list at the end of Section 4.1.2 and see that all the terms in the
expressions Bj(θ)ρj , j = 0, . . . , 4, except those that contain θ as a factor are regular at (R, 0)
with all their derivatives. We also recall that the sole purpose of using the truncated asymptotic
expansion (4.32) is to subtract it from the exact solution and thereby remove the near-boundary
singularity or, more precisely, reduce it to a level beyond which the finite difference scheme be-
comes insensitive to higher-order singular terms. Therefore, keeping the aforementioned regular
terms in or dropping them from (4.32) will make no difference as far as achieving our key goal,5

which is restoring the design convergence rate of the numerical method. As such, we set the
undetermined coefficients C(B)

j to zero for convenience. Moreover, we could have omitted all
other terms in the expressions for Bj(θ) except those containing θ because those terms are
regular as well. However, we have chosen to keep them in our tests to demonstrate the fact
that having or not having an additional regular component in the expansion will not affect the
numerical performance in any way. Indeed, the only essential requirement of the regularized
problem (4.1) or (4.2) is that its solution must be sufficiently smooth so as to re-enable the
design high order of accuracy of the scheme. If this requirement is met, then the regularized
problem can be solved numerically, and the solution to the original problem can subsequently
be restored by adding back the previously subtracted singular part.

Next, to compute the right-hand side for the regularized problem, one applies the Helmholtz
operator to the sum of the asymptotic expansions, u(R,0) + u(−R,0). Hence, the latter must be
known everywhere on the disk Ω. However, as has been mentioned, the function ρ(x, y) given
by (4.26) is unbounded at the opposite point (−R, 0), and, consequently, the function u(R,0) is
not defined there. Likewise, the function u(−R,0) is not defined at the point (R, 0). Therefore,

5The same applies not only to the genuine regular terms but also to the terms that have sufficiently many
continuous derivatives.
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to achieve the desired regularization, instead of subtracting
(
u(R,0) + u(−R,0)

)
from the exact

solution u, we will first modify u(R,0) and u(−R,0) in a particular way and then subtract:

v = u−
(
µ(R,0)u(R,0) + µ(−R,0)u(−R,0)

)
. (4.36)

The multipliers µ(R,0) and µ(−R,0) in equation (4.36) are smooth functions equal to unity on some
neighborhood of (R, 0) and (−R, 0), receptively. Further away from (±R, 0), those multipliers
gradually decay to zero. An example of a suitable µ(R,0) on the unit disk is shown in Figure 4.2.
The function µ(−R,0) is an even reflection of µ(R,0) around the y axis.
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Figure 4.2: Function (4.37) on the disk R = 1. The parameters are r1 = 0.1, r2 = 0.9,
ϕ1 = π/12, ϕ2 = π/3

What Figure 4.2 actually represents is the function defined in polar coordinates:

µ(R,0)(r, ϕ) = µr(r)µϕ(ϕ), (4.37)

93



where
µr(r) ≡ P6

(
r − r1

r2 − r1

)
, (4.38)

µϕ(ϕ) ≡


1− P6

(
ϕ− ϕ1

ϕ2 − ϕ1

)
, 0 < ϕ < π,

1− P6

(
− ϕ+ ϕ1

ϕ2 − ϕ1

)
, −π < ϕ < 0,

(4.39)

and

P6(x) =


0, x < 0,

x7
(
924x6 − 6006x5 + 16380x4 − 24024x3 + 20020x2 − 9009x+ 1716

)
,

1, x > 1.

0 < x < 1,

(4.40)
The univariate function P6(x) grows smoothly from zero to one on the interval [0, 1]. Its first
six derivatives are continuous at both endpoints, x = 0 and x = 1, where they are all equal to
zero, while the seventh derivative undergoes a jump. In (4.38), r1 and r2 denote some positive
numbers such that r1 < r2 < R. Therefore, the function µr(r) of (4.38) smoothly increases
from zero to one in the radial direction on the annulus {r1 6 r 6 r2}, i.e., strictly inside the
disk Ω = {0 6 r 6 R}. Similarly, the angles ϕ1 and ϕ2 are chosen so that 0 < ϕ1 < ϕ2 < π.
Then, the function µϕ(ϕ) of (4.39) is equal to one in the sector |ϕ| 6 ϕ1, symmetrically decays
to zero for ϕ1 < |ϕ| < ϕ2, and vanishes for |ϕ| > ϕ2. Altogether, this guarantees the desired
behavior of µ(R,0) of (4.37).

We emphasize that the multipliers µ(±R,0) introduced in (4.36) will affect both the right-
hand side, see formula (4.35), and the boundary data of the regularized problem (4.2). The
resulting final formulation of the regularized problem that is solved numerically by the method
of difference potentials is presented in Section 4.2.1.

Additional tests The remaining five test cases are described in detail in Appendix B. Out
of the five, two are Dirichlet problems with near-boundary singularities of decreasing strength
— one is due to a jump discontinuity in the first derivative of the data function and the other is
due to a jump discontinuity in the second derivative of the data function. The remaining three
are Neumann problems. They also have near-boundary singularities of decreasing strength, due
to a jump in the data function itself, its first derivative, and its second derivative, respectively.
In Appendix B, we present the boundary conditions for the remaining five test problems (that
replace (4.28)) and provide the coefficients of their asymptotic expansions. In this section, we
make a few general comments:

• For all the tests, we use symmetry with respect to the y axis to obtain the expansion
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u(−R,0).

• The undetermined coefficients C(B)
j are set to zero in all tests.

• The multipliers µ(±R,0), see (4.37), are used in all the tests to enable the independent
treatment of each individual singular point.

• The degree of smoothness and the number of terms in the expansion are determined as
follows. In the Dirichlet tests with the discontinuous first and second derivatives the non-
trivial (i.e., non-constant) terms in the asymptotic expansion begin with the functions
u

(±R,0)
1 and u(±R,0)

2 , respectively. Hence, the solution in these cases is smoother than that
of Test 1, which is natural because the boundary data are smoother and, intuitively, should
require less regularization (see the numerical experiments of Section 3.3.11). Nevertheless,
even for these smoother settings we should truncate the expansion exactly at the same
level (at u(±R,0)

4 term) as for Test 1 to maintain the desired smoothness of the right-hand
side.

• The asymptotic expansion for the Neumann problems takes the form (4.16), with the
respective exponents greater by one than those in the Dirichlet expansion (4.7). Therefore,
we can truncate the Neumann expansion at one term earlier (at j = 3), which proves
sufficient for the regularized difference v to have four continuous derivatives.

4.2 Solution by difference potentials in the presence of singu-

larities

4.2.1 Regularized problem

Assume now that we have a boundary value problem (3.1) on the unit disk Ω with boundary
condition (3.1b) that is not smooth at the points ϕ = 0 and ϕ = π on the unit circle Γ. We then
build the appropriate singular functions {u(R,0)

j }Mj=1 via the methods of Section 4.1 (for all the
examples of Section 4.1.3 and Appendix B, it proves sufficient to take M = 4) and formulate the
regularized BVP (4.1) by subtracting the singular functions multiplied by the cutting function
µ(R,0) from the solution u in the original BVP (3.1). We take advantage of the symmetry of
the problem to address the opposite singular point (−R, 0) with no additional effort. Collecting
the known terms on the right-hand side, we arrive at the regularized BVP, for which we have
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previously used the generic notation (4.1) [cf. equations (4.2), (4.35), and (4.36)]:

Lu =−
M∑
j=1

L(µ(R,0)u
(R,0)
j )−

M∑
j=1

L(µ(−R,0)u
(−R,0)
j ) def= f, x ∈ Ω, (4.41a)

lΓu =φΓ −
M∑
j=1

lΓ(µ(R,0)u
(R,0)
j )−

M∑
j=1

lΓ(µ(−R,0)u
(−R,0)
j ) def= ψΓ. (4.41b)

In formula (4.41b), we allow the boundary operator lΓ to specify either a Dirichlet or a Neu-
mann condition. By design, both the right-hand side f of the regularized BVP (4.41a) and the
regularized boundary data ψΓ of (4.41b) are sufficiently smooth on their respective domains,
with at least, respectively, two and four continuous derivatives at the singular points ϕ = 0 and
ϕ = π on the boundary Γ.

The method of difference potentials, as described in Chapter 3, can now be applied to the
regularized problem (4.41) without degradation of the design fourth-order convergence rate of
the overall scheme. Let uR denote the “regular” solution, i.e., the solution to the regularized
problem (4.41) by the method of difference potentials, which, for a particular grid N on the
square auxiliary domain, has its values defined on the nodes N+ (recall that this is the set of
interior nodes of Ω plus a “fringe”, see Figure 3.1). Then the numerical solution u to the original
problem (3.1) (which we have taken to be homogeneous with discontinuous BCs) at the nodes
N+ is given by simply adding back the singular expressions calculated at these nodes:

u
∣∣
N+ = uR + µ(R,0)

∣∣
N+

M∑
j=1

u
(R,0)
j

∣∣
N+ + µ(−R,0)

∣∣
N+

M∑
j=1

u
(−R,0)
j

∣∣
N+ . (4.42)

Therefore, the algorithm for the method of difference potentials presented in Chapter 3 does
not change at all. What changes, rather, is the problem which we solve by difference potentials.
In other words, we rephrase the original singular problem (3.1) as the regularized problem (4.1)
which takes the specific form (4.41), apply the method of difference potentials to the regularized
problem (4.41), and then add back the singular terms as in (4.42).

4.2.2 Solution of multiple problems at low cost

In the numerical simulations of Section 4.3, all of the problems have singularities at the same
locations, ϕ = 0, π, on the unit circle Γ. Hence, they differ only by the right-hand side of
the regularized equation (4.41a) and the boundary data ψΓ in (4.41b), which result from the
singular functions specific to a given problem, see Section 4.1.3 and Appendix B. As discussed
in Section 3.3.1, the similarity of these problems means that after solving one such problem
the computational complexity of the subsequent problems with different right-hand sides is
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substantially reduced, and this was demonstrated and analyzed for problems with multiple
right-hand sides in the simulations of Section 3.3.8. In fact, the basis that we use for the
following test problems is exactly the one used in Section 3.3.11, and thus the expensive step of
computing QH need not be repeated here. Consequently, having already computed QH ahead of
time, the following problems are solved at the nominal cost described in Section 3.3.8. Moreover,
we emphasize that the change of the type of the boundary condition from Dirichlet to Neumann
does not incur any further computational cost either.

4.3 Numerical simulations

We will be solving the homogeneous Helmholtz equation (3.1a) subject to boundary condition
(3.1b) on a disk Ω of radius 1, centered at the origin. For the purpose of using the method of
difference potentials, Ω is embedded in an auxiliary domain that is a square of side length 2.2,
also centered at the origin, see Section 3.1.1. We form series expansions of the boundary data
using Chebyshev basis functions as described in Section 3.2. The originally posed problem is
modified using the method of singularity subtraction outlined in Section 4.1, with particular
singular functions for each problem derived in Section 4.1.3 and Appendix B. This results in
an inhomogeneous problem (4.1) or (4.41) which no longer has a discontinuity in the boundary
condition and whose right-hand side is sufficiently smooth. The solution of problem (4.41) is
therefore expected to possess sufficient regularity so that the method of difference potentials
will yield the numerical solution at the design rate of grid convergence for the scheme (2.33),
which is fourth order. After computing the numerical solution to this regularized problem, we
add back the singular functions to the numerical solution in order to obtain an approximation
to solution of the original singular problem (3.1).

4.3.1 Parameters of the computational setting

Scheme and errors In all of the following test problems, the calculations are conducted
using the fourth-order accurate compact finite difference scheme (2.33) supplemented by the
Sommerfeld-type boundary conditions (2.50a-2.50b) at the left and right edges of the auxiliary
square and a Dirichlet condition (2.44a) at its top and bottom edges. These computations are
carried out on a series of Cartesian grids containing 64, 128, 256, 512, 1024, and 2048 cells
uniformly spaced in each direction, with each grid being nested within the previous. We do
not suppose that the exact solution to each problem is known, and thus we use this nesting of
the grids to compute the error in the “Cauchy sense,” i.e., the maximum absolute value of the
difference between the two numerical solutions on a pair of consecutive grids, with this difference
evaluated at the nodes of the coarser grid. The convention which we adopt in Tables 4.1-4.7 is
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that the coarser grid involved in the computation of the error is shown, and the convergence
rates shown are computed as the binary logarithm of the ratios of successive errors. For the
first test, we have also found the exact solution explicitly (Section 4.3.2), which enables a direct
study of the grid convergence as an additional validation of our method.

Geometry and basis functions The circular boundary Γ is partitioned into two arcs which
meet, by design, at the discontinuity locations of the boundary data, so that Γ1 = {r =
1, 0 < ϕ < π}, Γ2 = {r = 1, π < ϕ < 2π}. Thus, the trace of the solution along each
arc of the circle is independently represented by its own set of Chebyshev basis functions.6 We
implement the Chebyshev basis functions on an extended interval [−1−ε, 1+ε] in order to avoid
numerical difficulties that arise when computing the derivatives of the Chebyshev functions near
the endpoints of the interval [−1, 1]. In all of the simulations, this parameter is chosen to be
ε = 0.001 (for details on the choice of this parameter, see Section 3.3).

The number of basis functions N used to expand the boundary data according to formula
(3.33) is chosen specifically for each grid and each problem7. On one hand, the number of
basis functions must approximate the boundary data with accuracy that matches or exceeds
the accuracy of the finite difference scheme (2.52). On the other hand, having too many basis
functions on a given grid will result in a loss of accuracy. The reason is that each Chebyshev
basis function is more oscillatory than the previous one. Eventually, for a particular grid, a basis
function is reached whose oscillations are finer than the grid size, and hence all subsequent basis
functions become essentially indistinguishable on the grid. This artificial loss of accuracy is
alleviated when moving to finer grids, which may give the false impression of an unusually high
convergence rate (see Section 3.3.6). We have observed by trial-and-error that the threshold for
the loss of accuracy due to having too many basis functions on the coarsest grid, 64 × 64, is
around N = 45 basis functions for this problem. Rather than choosing an arbitrary tolerance σ
for the truncation of the basis expansion of the boundary data ahead of time, as done for the
simulations of Section 3.3.2, we present the following alternative strategy of determining the
appropriate number of basis functions in each case:

1. We run the simulation first on the coarsest grids, 64 × 64 and 128 × 128, using 45 basis
functions on each. By saving the matrix QH from each test, we can very cheaply reduce

6These bases need not have the same dimensions: neither the bases on each arc or even the bases for the
Dirichlet or Neumann portions of the data need to match. That is, we could instead assign altogether 4 different
numbers of basis functions, one for each of the two arcs and one for each component of the Cauchy data on each
arc. It is only for convenience that we use the same number of basis functions N on each arc and each component
of the data.

7Each boundary segment is of equal length in this case and we have no other reason, such as changes in the
geometry, to expect to need more basis functions on one or the other. For this reason, we choose to have the
same N as the number of basis functions on each respective segment, unlike the discussions in Section 3.3.6.
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the number of basis functions in subsequent simulations by simply eliminating the cor-
responding columns of QH . If we instead wish to add more basis functions, we may also
prevent redundant computation by only computing the additional columns of QH that
we desire.

2. We run the simulation again on the 64 × 64 grid with fewer and fewer basis functions8,
computing the error for each test by comparing the solution to the one on the 128× 128
grid. At first the error decreases because the number of basis functions decreases from
N = 45, which is too many, to smaller values. Then, it reaches what we will refer to
as the “grid error” — that is, the error which is free from both the interference due to
oscillations in higher basis functions and from the insufficiently accurate approximation of
the boundary data. The design rate of grid convergence can be observed if the number of
basis functions falls into this middle range (not too many, but enough for approximating
the boundary data), which is different for each grid.

3. Once the grid error has been determined, we compute the truncation error of the Cheby-
shev expansion of the boundary data for the minimum number of basis functions which
yields the grid error. This truncation error can be evaluated by computing the expansion
with many more basis functions and then looking at the maximum absolute value of the
coefficients beyond the chosen point which yields the grid error.

4. Knowing that the finite difference scheme is fourth order accurate, and that our consec-
utive grids will each have twice as many nodes in each direction, we expect that the grid
error for the 128 × 128 grid will be smaller than that of the 64 × 64 grid by a factor of
16. Therefore, we obtain the necessary truncation error for the Chebyshev series on the
128 × 128 grid by dividing the truncation error of the Chebyshev series obtained on the
64 × 64 grid by 16, and then determine the number of coefficients required to achieve
this truncation error on the finer grid. The resulting number of coefficients should be
sufficient to achieve the grid error on the 128 × 128 grid. According to step 1, we may
need to compute only the additional columns of QH that correspond to the basis functions
beyond N = 45, if necessary.

5. For all subsequent grids, we continue to divide the truncation error obtained in step 4
by another factor of 16 (so that for the grid 256 × 256, we are dividing the original
truncation error by 162, etc.) and then find the appropriate number of Chebyshev terms
corresponding to that grid the same way as before.

8This is inexpensive since the projection of each basis function has already been computed. Therefore, we
may simply drop off the appropriate columns of the matrix QH .
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Remarks Because these grids are coarse, the computational cost of this procedure, in view
of the goal of determining a sufficient number of basis functions for finer grids, is comparatively
very low. Note that if the Chebyshev expansions of the boundary functions converge too slowly,
then the minimum number of basis functions required to represent the boundary data may
exceed the capability of the grid to resolve the basis functions. However, this has never been
observed in practice and is, in fact, prevented by design. Recall that the convergence of the
Chebyshev series depends on the smoothness of the function being expanded: it is noted in
Section 3.2.5 that the Chebyshev coefficients decay relative to the degree of smoothness of
the function similarly to the Fourier coefficients (see footnote 3, page 44). While the original
boundary data in our problems are discontinuous, the boundary data are “smoothed” by the
process of singularity subtraction, so that the data on which we perform the expansion have
at least 4 continuous derivatives. This has proven to be sufficient for our case, as the results
in Tables 4.1-4.7 confirm. Since the number of basis functions on each grid depends on the
boundary data of the problem, our particular choices are displayed in Tables 4.1-4.7.

The computer implementation of the algorithm is performed in MATLAB.

4.3.2 Test 1: Discontinuous Dirichlet boundary data

The specified Dirichlet condition is discontinuous,

u|r=1 =

{
1, 0 < ϕ < π,

0, π < ϕ < 2π,

and the coefficients of the singular terms are given by (4.30-4.31). We demonstrate the conver-
gence of the method in Table 4.1 for the wavenumbers k = 5 and k = 15.

Table 4.1: Results for Dirichlet boundary data with discontinuity.

k = 5 k = 15
Grid N Error Conv. rate N Error Conv. rate

64× 64 30 2.46 - 40 0.73 -
128× 128 30 6.40 · 10−4 11.91 40 4.72 · 10−2 3.96
256× 256 45 2.48 · 10−5 4.69 50 3.02 · 10−3 3.97
512× 512 70 1.58 · 10−6 3.97 53 1.91 · 10−4 3.99

1024× 1024 81 3.60 · 10−7 2.13 71 1.19 · 10−5 4.00
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As an additional corroboration of the performance of the method, we present a comparison
to the exact solution for this test problem:

u(r, ϕ) =
1
2
J0(kr)
J0(kR)

+
2
π

∞∑
n=0

J2n+1(kr)
J2n+1(kR)

sin(2n+ 1)ϕ
2n+ 1

, (4.43)

where Jn are the Bessel functions of the first kind and R is the radius of the circle, which in our
case is R = 1. In practice, we must make a few modifications in order to evaluate (4.43) with
sufficient accuracy. First, we truncate the series expansion at 2000 terms. Next, for terms of the
series beyond the 50-th we replace the ratio of Bessel functions by its asymptotic form r2n+1

due to a loss of numerical stability in computing higher-order Bessel functions. Therefore, we
approximate the solution as follows:

u(r, ϕ) =
1
2
J0(kr)
J0(kR)

+
2
π

[
50∑
n=0

J2n+1(kr)
J2n+1(kR)

sin(2n+ 1)ϕ
2n+ 1

+
2000∑
n=51

r2n+1 sin(2n+ 1)ϕ
2n+ 1

]
. (4.44)

One final note is that the series (4.43) converges poorly near the boundary of the disk, R = 1. To
overcome this, we compare the numerical solution to the expansion (4.44) only on the interior
90% of the disk (i.e., on the subset r < 0.9). The results of this comparison are summarized in
Table 4.2.

Table 4.2: Results for Dirichlet boundary data with discontinuity. The error is computed by
comparison to the approximation (4.44) of the exact solution.

k = 5 k = 15
Grid N Error Conv. rate N Error Conv. rate

64× 64 30 2.4 · 10−3 - 40 0.81 -
128× 128 30 1.39 · 10−4 4.11 40 5.58 · 10−2 3.86
256× 256 45 2.33 · 10−6 5.90 50 3.21 · 10−3 4.12
512× 512 70 1.15 · 10−7 4.34 53 2.03 · 10−4 3.99

1024× 1024 81 8.38 · 10−9 3.78 71 1.27 · 10−5 3.99
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4.3.3 Test 2: Continuous Dirichlet boundary data with first derivative dis-

continuity.

For this problem, the Dirichlet condition is discontinuous in the first derivative,

u(ϕ) =

{
π
2 − ϕ, 0 < ϕ < π,

ϕ− 3π
2 , π < ϕ < 2π,

and the coefficients of the singular terms are given by (B.3-B.4).

Table 4.3: Results for continuous Dirichlet boundary data with first derivative discontinuity.

k = 1 k = 5
Grid N Error Conv. rate N Error Conv. rate

64× 64 40 0.39 - 40 0.80 -
128× 128 50 7.42 · 10−5 12.36 40 1.83 · 10−4 12.09
256× 256 66 5.60 · 10−6 3.73 50 7.18 · 10−6 4.67
512× 512 82 3.16 · 10−7 4.15 74 4.42 · 10−7 4.02

1024× 1024 111 2.10 · 10−8 3.91 111 2.63 · 10−8 4.07

4.3.4 Test 3: Continuous Dirichlet boundary conditions with second deriva-

tive discontinuity.

The Dirichlet boundary condition is now discontinuous in the second derivative,

u(ϕ) =

{
cosϕ, 0 < ϕ < π

cos 3ϕ, π < ϕ < 2π,

with the coefficients of the singular terms given by (B.7-B.8).
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Table 4.4: Results for continuous Dirichlet boundary data with second derivative discontinuity.

k = 1 k = 5
Grid N Error Conv. rate N Error Conv. rate

64× 64 40 0.97 - 40 7.55 -
128× 128 50 4.34 · 10−4 11.12 40 1.19 · 10−4 15.95
256× 256 66 3.82 · 10−5 3.50 56 1.48 · 10−5 3.01
512× 512 76 2.33 · 10−6 4.03 86 7.77 · 10−7 4.25

1024× 1024 110 1.41 · 10−7 4.05 124 4.76 · 10−8 4.03

4.3.5 Test 4: Discontinuous Neumann boundary data

The discontinuous Neumann boundary condition for this test is

∂u

∂n
(ϕ) =

{
1, 0 < ϕ < π,

0, π < ϕ < 2π,

and the coefficients of the singular terms are given by (B.11-B.12).

Table 4.5: Results for Neumann boundary data with discontinuity.

k = 1 k = 5
Grid N Error Conv. rate N Error Conv. rate

64× 64 40 0.26 - 40 3.57 -
128× 128 50 7.60 · 10−5 11.71 50 1.30 · 10−4 14.73
256× 256 71 6.03 · 10−6 3.65 57 1.51 · 10−5 3.11
512× 512 96 2.62 · 10−7 4.52 90 8.67 · 10−7 4.12

1024× 1024 124 1.47 · 10−8 4.15 119 7.11 · 10−8 3.61
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4.3.6 Test 5: Continuous Neumann boundary data with first derivative dis-

continuity.

In this test, the Neumann boundary data are discontinuous in the first derivative,

∂u

∂n
(ϕ) =

{
π
2 − ϕ, 0 < ϕ < π,

ϕ− 3π
2 , π < ϕ < 2π,

and the coefficients of the singular terms are given by (B.13-B.14).

Table 4.6: Results for continuous Neumann boundary data with first derivative discontinuity.

k = 1 k = 5
Grid N Error Conv. rate N Error Conv. rate

64× 64 40 0.55 - 40 0.52 -
128× 128 50 1.78 · 10−5 14.92 50 6.57 · 10−4 9.64
256× 256 76 1.85 · 10−6 3.26 71 1.35 · 10−5 5.61
512× 512 94 1.90 · 10−7 3.28 96 2.90 · 10−7 4.78

1024× 1024 128 8.97 · 10−9 4.40 122 2.66 · 10−8 4.20

4.3.7 Test 6: Continuous Neumann boundary data with second derivative

discontinuity.

For the final test, the Neumann data have a jump in the second derivative,

∂u

∂n
(ϕ) =

{
cosϕ, 0 < ϕ < π,

cos 3ϕ, π < ϕ < 2π,

and the coefficients of the singular terms are shown in (B.15-B.16).
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Table 4.7: Results for continuous Neumann boundary data with second derivative discontinu-
ity.

k = 1 k = 5
Grid N Error Conv. rate N Error Conv. rate

64× 64 40 0.83 - 40 5.10 -
128× 128 40 5.76 · 10−4 10.49 40 6.03 · 10−4 13.05
256× 256 60 3.23 · 10−5 4.15 60 3.47 · 10−5 4.12
512× 512 96 2.32 · 10−6 3.80 96 1.65 · 10−6 4.39

1024× 1024 126 1.37 · 10−7 4.08 128 6.62 · 10−8 4.64

4.4 Discussion

We have shown in this chapter how to apply the method of difference potentials when computing
singular solutions of the Helmholtz equation while preserving high-order accuracy. The key idea
is to regularize the original problem by subtracting several leading terms of the asymptotic
expansion of the solution near the singularity, which we have demonstrated for the Dirichlet
and Neumann boundary conditions, and to then approximate numerically only the remaining
sufficiently smooth part of the solution. Additionally, we have implemented a local conformal
mapping which reduces the problem of finding the coefficients of the asymptotic expansion to the
simple case of a wedge for curvilinear boundaries with accuracy sufficient to retain the high order
of the overall method. As a result, the finite difference scheme maintains its consistency for the
regularized problem, and, as the computations in Section 4.3 demonstrate, the overall numerical
method converges with the design rate. In doing so, the method of difference potentials has also
permitted us to handle non-conforming curvilinear boundaries on regular structured grids with
no deterioration of accuracy and enables the solution of a series of problems with various
boundary conditions at a low computational cost per problem (Sections 3.3.1,4.2.2). Tables 4.1-
4.7 demonstrate that high order accuracy is maintained for a variety of wavenumbers and
boundary conditions with singularities of different strengths.

It may be noted, however, that the number of basis functions required in the simulations
of this chapter are considerably higher than in the simulations of Chapter 3, with 128 basis
functions on each arc of the Chebyshev basis in Section 4.3.7 for a total of 4(128) = 512
basis functions. The reason for this is because even the regularized problem contains a weak
singularity at the boundary points, resulting in slower convergence of the Chebyshev series.
This is only one of many factors that may affect the total number of basis functions, and these
are explored in some detail in Chapter 5.
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Chapter 5

The Pollution Effect and Efficiency

of the Algorithm

The most expensive step of the difference potentials algorithm presented in Chapter 3 is that
of applying the difference projection to each basis function of the series representation of the
boundary data. For each additional basis function, applying the projection entails solving the
AP (2.51) by finite differences with a new right-hand side g. The central dilemma in choosing
the minimally sufficient number of basis functions on a particular grid is the lack of an error
estimate to provide guidance on the tolerance for the basis expansion of the boundary data.
There are additional factors that determine the actual number of basis functions needed, but
in fact it is the truncation tolerance σ of the basis expansion that we must be concerned with
rather than the specific number of basis functions required to meet that accuracy for a particular
problem.

For the Helmholtz equation, the dispersion error, or pollution effect, is known to behave
proportional to h4k5 asymptotically as the step size h tends to zero and the wavenumber k
increases [1, 2, 3]. The behavior of the coefficient of h4k5 in the asymptotic expansion of the
error is nontrivial and difficult to obtain. Rather than attempt to obtain an error estimate by
analyzing the complicated behavior of this constant, we instead assume that the error may
be estimated as a coefficient CP times the leading term, CPh4k5, where CP is not the exact
constant coefficient of the h4k5 in the asymptotic expansion of the error but instead accounts
for the behavior of the higher order terms as well and thus may vary. Using this simplification1,
we investigate the behavior of CP for the range of problems we have solved thus far.

1This differs from our study of the pollution effect in [23], in which we confirm the pollution effect for a fourth
order polar FD scheme for the Helmholtz equation. In this work, instead of demonstrating the contribution of the
pollution effect to the error we assume that the overall error is dominated by the dispersion error. This provides
an a priori approximation of the error within a range of related problems once a representative sample of them
has been solved.
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This chapter is divided as follows. In Section 5.1, we experimentally evaluate the pollution
coefficient CP for the variety of simulations conducted in Chapters 3-4 and provide an additional
numerical study verifying that this coefficient does not depend significantly on the wavenumber
k. Section 5.2 provides a summary analysis of the different procedures employed thus far for
choosing the number of basis functions, describes an alternative procedure based on estimation
of the pollution coefficient CP , and demonstrates the relationship between the truncation error σ
of the basis expansion of the boundary data and the overall error of the scheme by a numerical
example. Finally, in Section 5.3, we implement the alternative strategy of Section 5.2 using
the average CP of the experimentally evaluated pollution coefficients CP from Section 5.1 to
determine the number of basis functions for a new problem.

5.1 Numerical investigation of the Pollution Effect

We begin the investigation of the pollution effect with a simple calculation which estimates the
pollution coefficient CP from the previously computed numerical examples of Sections 3.3.3-
3.3.8 and Sections 4.3.2-4.3.7. Because of the asymptotic dependence of the pollution effect
on not only the step size h but also the wavenumber k, we have omitted the cases from the
aforementioned sections with k = 1. This set of problems is diverse in several ways, involving
different wavenumbers, boundary conditions, singularities, and inhomogeneities for the BVP
(3.1). The calculation of the pollution coefficient CP is performed by dividing the experimentally
obtained error for each problem by h4k5, and the results are displayed in Table 5.1, with each
CP being computed from the finest available mesh of the cited section.

We observe some similarity in the pollution coefficients of problems solved by the method
of difference potentials regardless of the boundary conditions on the circle, the wavenumber, or
the inhomogeneous right-hand side of the Helmholtz equation. The coefficient CP for all of the
problems from Chapters 3-4 is consistently between the orders of 10−1 and 10−3.

Commonalities of the problems The numerical examples of Sections 3.3.3-3.3.8 and Sec-
tions 4.3.2-4.3.7 all involve the constant-coefficient Helmholtz equation on the same domain, the
unit disk centered at the origin, and the auxiliary problems being solved by the finite difference
scheme are therefore also closely related. Not only are the APs posed on square domains of equal
size, but notice that when the boundary conditions on the domain of interest Ω change that
the boundary conditions on the encapsulating auxiliary domain Ω0 remain the same, see (2.51).
In effect, the APs utilized throughout all of the problems in Chapters 3-4 differ only in two
important ways. First, the right-hand side g of the AP (2.51) changes, and this change comes
from a combination of the BCs on the domain Ω, the right-hand side f of the interior BVP
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Table 5.1: Estimations of the pollution effect coefficient CP for various simulations.

Section Step Size k Error CP
3.3.3 2.2/2048 10 8.25 · 10−9 6.20 · 10−2

3.3.4, Table 3.3 2.2/2048 10 3.05 · 10−9 2.29 · 10−2

3.3.4, Table 3.4 2.2/2048 10 1.29 · 10−9 9.69 · 10−2

3.3.5, Table 3.5 2.2/2048 10 4.73 · 10−9 3.55 · 10−2

3.3.5, Table 3.6 2.2/2048 10 3.07 · 10−9 2.31 · 10−2

3.3.8, Table 3.9 2.2/2048 10 1.21 · 10−9 9.09 · 10−3

3.3.8, Table 3.10 2.2/2048 10 1.33 · 10−9 9.99 · 10−3

4.3.2, Table 4.2 2.2/1024 5 8.38 · 10−9 1.26 · 10−1

4.3.2, Table 4.2 2.2/1024 15 1.27 · 10−5 7.85 · 10−1

4.3.3, Table 4.3 2.2/1024 5 2.63 · 10−8 3.95 · 10−1

4.3.4, Table 4.4 2.2/1024 5 4.76 · 10−8 7.15 · 10−1

4.3.5, Table 4.5 2.2/1024 5 7.11 · 10−8 1.07
4.3.6, Table 4.6 2.2/1024 5 2.66 · 10−8 4.00 · 10−1

4.3.7, Table 4.7 2.2/1024 5 6.62 · 10−8 9.94 · 10−1

(3.1), and the basis functions chosen, as these right-hand sides are all defined2 by the difference
potential of equation (3.2). Second, the differential operator L of the AP (2.51) changes when
the wavenumber k of the Helmholtz equation (3.1a) changes. However, we expect this change
to be reflected in the term k5 of the error estimate CPh4k5.

The data in Table 5.1 indicate that the similarities between the APs utilized in the method
of difference potentials may allow us to estimate the pollution coefficient for a range of related
problems. While the wavenumber does not change throughout Sections 3.3.3-3.3.8, the boundary
conditions and even the inhomogeneous right-hand side of the equation vary without much
difference in the pollution coefficient CP . This is also the case in the simulations of Sections 4.3.2-
4.3.7, which also have similar pollution coefficients with differences in the boundary conditions
and right-hand sides, and also a few differences in the wavenumber. What lacks the most in
variety from Table 5.1 is the wavenumber k involved, and to this end we design the numerical
experiment of Section 5.1.1. Our expectation, given that the estimate CPh4k5 of the pollution
effect already contains the term k5, is that the effect on CP due to the higher order order terms
of the asymptotic expansion of the error will be small provided the wavenumber k is sufficiently

2Recall that each of these three aspects of the problem will result in different right-hand sides g for the AP
(2.51). If the BVP (3.1) is inhomogeneous, then (3.6) implies that the AP must be solved with a right-hand side
g that is influenced by this inhomogeneity, and an additional right-hand side of the AP comes from the term QIf
of (3.23). Several more right-hand sides g for the AP result from the projection of the basis functions to form
QH in (3.23). One final right-hand side g for the AP is due to the final projection required in (3.6) to reconstruct
the solution on the interior domain from the boundary data, which is directly affected by the BC on Ω.
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large.

5.1.1 Effect of the wavenumber on the pollution coefficient

We design an experiment to isolate and observe the effect of changing the wavenumber on the
pollution coefficient CP by solving several problems which are identical except that each has a
different wavenumber ranging from k = 3, . . . , 26. By a simple calculation one may verify that
there is little difference between the pollution coefficients on the finest grids (2048× 2048) and
the 512× 512 grids for the same problems analyzed in Table 5.1. Therefore, we assume for this
experiment that the wavenumber k ≥ 3 is sufficiently large and the step size h = 2.2/512 ≈ 0.004
is sufficiently small so that the error is reasonably approximated as CPh4k5.

Parameters We solve the homogeneous Helmholtz equation (3.1a) on the unit disk centered
at the origin so that the boundary curve Γ is the unit circle. We specify a Dirichlet BC (3.1b) by
truncating a plane wave test solution u = eikx to the boundary curve Γ. For each wavenumber
k = 3, . . . , 26, the error is computed in the infinity norm on the domain Ω by comparison to
the exact solution u = eikx, and the pollution coefficient CP in each case is experimentally
evaluated from the resulting errors on a 512× 512 grid.

We implement a split Chebyshev basis on the segments Γ1 = {r = 1, θ ∈ [0, 2π/3)},Γ2 =
{r = 1, θ ∈ [2π/3, 2π)}. The number of basis functions was chosen to be N1 = 55 and N2 = 78
on Γ1 and Γ2, respectively, for all tests. Experimentally, we have found that these numbers of
basis functions allow for accurate computation across this range of wavenumbers at this grid
size.

Note that for each different wavenumber the finite difference operator L(h) will be different.
Therefore, the several back solves (specifically, 2N1 + 2N2 = 2(55) + 2(78) = 266) must be
computed to form the matrix Q separately for each wavenumber k (see Table 3.2) even though
the basis does not change. For the particular wavenumber k = 10 we may reuse the matrix Q

from the previous simulations of Section 3.3.4, which we have also used in several subsequent
examples.

The results are summarized in Table 5.2 and visualized in Figure 5.1 along with the mean
and median values of CP from Table 5.2, which are, respectively, 0.072 and 0.032.

5.1.2 Remarks and discussion

Table 5.1 suggests that the pollution coefficient does not vary dramatically among problems
solved by difference potentials which share similarities in the AP on Ω0 but which may differ
greatly in the BCs, source terms, and wavenumbers of the original interior problem on Ω ⊂
Ω0. Due to the lack of variety in the wavenumber for the cases analyzed in Table 5.1, the
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Table 5.2: Estimation of the pollution coefficient CP for k = 3, . . . , 26 on a 512× 512 grid.

k ||u− unum||∞ CP
3 3.14 · 10−9 0.038
4 5.84 · 10−9 0.017
5 1.77 · 10−8 0.017
6 1.94 · 10−8 0.0073
7 8.89 · 10−7 0.16
8 8.05 · 10−8 0.0072
9 1.54 · 10−7 0.0076
10 8.29 · 10−7 0.024
11 1.51 · 10−6 0.028
12 1.09 · 10−6 0.013
13 1.54 · 10−5 0.12
14 1.45 · 10−6 0.0079

k ||u− unum||∞ CP
15 7.77 · 10−6 0.030
16 1.34 · 10−5 0.038
17 1.87 · 10−4 0.39
18 3.95 · 10−5 0.061
19 6.72 · 10−5 0.080
20 2.20 · 10−4 0.20
21 3.43 · 10−5 0.025
22 5.92 · 10−5 0.034
23 5.81 · 10−5 0.027
24 2.46 · 10−4 0.091
25 3.43 · 10−4 0.024
26 8.92 · 10−4 0.024

numerical experiment of Section 5.1.1 was devised to more decidedly confirm that CP does
not vary significantly with the wavenumber, as expected. Even when the boundary conditions,
inhomogeneous right-hand sides, and wavenumbers of the cases compared in Tables 5.1-5.2
differed widely, the boundary conditions of the AP (2.51) were unchanged — what did change
for the AP in every case were the right-hand sides g. This would indicate that among problems
which share such similarities in the AP, one may rely on the same estimate of the pollution
coefficient across a broad class of problems with different boundary conditions, right-hand sides,
and wavenumbers.

Two potentially influential contributions to the pollution coefficient CP that we have not
explored are related to the geometry of both the domain Ω and the auxiliary domain Ω0 —
further investigation is needed in this regard, and an illustration of this contribution is given
at the beginning of Section 5.2. Of greater significance, our present observations position us to
comment on problems of a narrower focus in which the geometries involved are the same, and
this is the ultimate goal of Section 5.2.

5.2 Choosing the Number of Basis Functions

There are at least two important factors which will determine the required number of basis
functions: the geometry of the boundary curve and the expected error of the problem.
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Figure 5.1: Estimated values of the pollution coefficient CP for k = 3, . . . , 26 from the 512×512
grid.

Geometry Firstly, the geometry of the domain will obviously influence the variation of the
solution and its normal derivative along the boundary curve. As a simple example, consider
a plane wave test solution u = eikx, which we have used in several examples on a circular
boundary of radius 1. In this case, the Dirichlet data parameterized by the arc length which
we seek to approximate by a series expansion is u|r=1 = eik cos θ since x = cos θ on the unit
circle, where θ coincides with the arc length. Even if the test solution does not change, more
complicated geometry of the boundary curve will result in a more complicated expression for
the trace of the solution.

One can imagine that a boundary curve of non-constant curvature will inherently imply
more variation in the solution and its normal derivative than the circle, and therefore will
generally require more basis functions to achieve the same accuracy as on a simpler shape.
However, this is something over which we have no control. What we are able to control, rather,
is the accuracy σ of the basis representation, and the ideal choice of this tolerance is completely
unaffected by the shape of the boundary curve.

Expected error Another major contribution to the number of basis functions required will
be the error of the overall scheme, since this will determine the accuracy σ with which we must
approximate the boundary data. We expect from the pollution effect that the error will be
approximately CPh

4k5; thus, the unknown magnitude of the pollution coefficient CP is a key
factor in determining the largest acceptable tolerance σ — i.e., the tolerance which permits
the smallest acceptable number of basis functions for the series expansion of the boundary
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data and thereby yields the greatest efficiency of the difference potential algorithm detailed in
Section 3.2.7.

We may firstly observe that the number of basis functions required will increase as the
wavenumber k increases. As remarked upon regarding the geometry, this is due to the simple
fact that the boundary data are behaving in a more oscillatory way as the wavenumber k
increases, and more basis functions are required in order to resolve that behavior to the same
tolerance σ. Even if we adopt a tolerance σ which grows proportional to the expected error, this
may still be the case: while the basis expansion is asymptotically expected to converge rapidly
for smooth functions, there is no guarantee on the precise point at which this asymptotic
behavior begins.

Therefore we desire an estimate of the minimally sufficient number of basis functions, since
each additional basis function directly impacts the efficiency of the overall algorithm by adding
to the number of back solves required (see Table 3.2); however, as we have endeavored to show,
there are problem-specific factors (e.g., the geometry of the domain and wavenumber) that
restrict us to quantifying the tolerance σ. In Section 5.2.1 we discuss the strategies that we
have employed toward this end in Chapters 3-4 and present another alternative based on the
error estimate, and in Section 5.2.2 we provide additional insight into the choice of the tolerance
as it relates to the error estimate through a numerical investigation.

5.2.1 Strategies

Strategy 1: fixed predetermined tolerance Even in the most naive approach that we have
employed in Chapter 3 before considering how to reduce the total number of basis functions
in Sections 3.3.6-3.3.7, the rapid convergence of the basis for smooth functions dictated that
the number of basis functions was very small compared to the grid size, meaning that the
overall execution time of the algorithm indeed scales proportional to the cost of solving the AP
by finite differences. Nevertheless, we showed in Section 3.3.6 that we could reduce the total
number of basis functions substantially by relaxing this tolerance a bit after we knew what the
error was going to be. In Section 3.3.7 we showed that for problems which utilize the piecewise
parameterization of the boundary curve Γ we may also reduce the number of computations by
allowing for different numbers of basis functions on separate boundary segments.

The idea of Section 3.3 was to choose the tolerance ahead of time, which we took to be
σ = 10−10. After we had already performed the same computations on all grid sizes with this
predetermined tolerance on all grids, in Section 3.3.6 we sought to reduce the number of basis
functions on coarser grids. We chose the new tolerance for the finest grid, σ2048, to be equal to the
error which had already been obtained on that grid using the original tolerance of σ = 10−10.
Next, we extrapolated backwards to set a tolerance for the coarser grids by multiplying the
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tolerance σ2048 by the expected factor of 163 to obtain the tolerance σ1024 for the next coarsest
grid, and so on for each subsequent grid.

The choice σ = 10−10 was made arbitrarily based on our experience (rather than from any
kind of analysis) that the error of the FD scheme for these problems would not be smaller
than this tolerance even on the finest grid. As long as the tolerance is sufficiently small, the
largest contribution to the overall error of the difference potentials algorithm (see Section 3.2.7)
is attributable to the FD scheme, which has a design convergence rate of O(h4). For greater
peace of mind, we could have chosen a tolerance closer to the machine precision, e.g. σ = 10−16,
at the cost of several additional basis functions. Thus it becomes clear that determining the
optimal choice of the tolerance σ is precisely the issue in maintaining the optimal efficiency of
the overall algorithm.

Strategy 2: a posteriori tolerance extrapolation from a coarse grid The method of
Section 4.3.1 represents an improvement on the strategy of choosing the tolerance ahead of
time. By the same logic employed to reduce the number of basis functions in Section 3.3.6
a posteriori, the strategy outlined in Section 4.3.1 is to perform the same process in reverse
by obtaining the error on the coarsest grid first and then extrapolating forward to the finer
grids. This involves solving the problem on the coarsest grid several times - once with a large
number of basis functions, and then several more times, removing one basis function at a time,
until we achieved what seems to be the lowest possible error before the overall accuracy of the
scheme began to suffer due to insufficient accuracy of the series expansion of the boundary data.
Once that point is reached, the magnitude of the last Chebyshev coefficient in the expansion
is determined, which provides an estimate for the truncation tolerance σ64 of the Chebyshev
expansion needed to maintain the accuracy on this coarse grid. From there we extrapolate the
truncation tolerance σ64 to successively finer grids by dividing by a factor of 16 each time the
grid step size h was divided by 2. Though this may appear labor-intensive since we are solving
the problem several times, the fact that this is done on a coarse mesh makes it quite an efficient
approach if one ultimately desires a mesh that is several times finer. This approach proved to
be successful for the simulations of Section 4.3.

One distinction to highlight between these two approaches is that in Strategy 1 we use the
error itself as the new tolerance - that is, we assume that the accuracy of the basis expansion of
the boundary data needs to be similar to or exceed that of the error on the grid. In Strategy 2, we
determine the tolerance empirically by removing basis functions until the point when the series
expansion is no longer sufficient. An investigation of the relationship between the truncation
tolerance and the error was not presented. Instead, Section 5.2.2 provides a numerical case

3Due to the 4th order convergence rate of the scheme. Since the errors are expected to be O(h4), then doubling
the step size for each coarser grid is expected to be O(2h)4 = O(16h4)
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study in which we compare the empirically determined tolerance for a given problem to the
error obtained by the overall scheme.

Strategy 3: determining a tolerance by estimating the pollution coefficient A third
approach to setting a suitable tolerance σ would require an a priori estimate of the error. As we
have remarked, this is difficult in general due to uncertainty in the magnitude of the pollution
coefficient CP . However, we have established in Section 5.1 that the pollution coefficient does
not appear to vary greatly for a large class of related problems. Therefore, once a representative
problem is solved on a given domain Ω with the AP defined on Ω0, the resulting error may be
used to compute an estimate of the pollution coefficient CP that may then be used to compute
an a priori estimate for future problems on the same domain with the same AP.

In the case that one wishes to solve a variety of problems on a given domain with different
wavenumbers, boundary conditions, and inhomogeneous source terms, it may be sufficient to use
Strategy 2 for the first few problems and calculate an average CP of the pollution coefficients.
This then allows one to estimate the error for subsequent problems as CPh4k5 regardless of
changes in the boundary condition, source term, or wavenumber, and from this error estimate
the tolerance σ can be set. The numerical case study of Section 5.2.2 provides evidence that
taking σ equal to the overall error of the scheme is sufficient, and this would dictate that we
take σ = CPh

4k5 when CP is available.

Maximum number of basis functions As a final point of this discussion, we must remem-
ber that taking too many basis functions will degrade their linear independence on the discrete
boundary γ and lead to a loss of accuracy for coarser grids. Previously, this was observed when
the number of basis functions was chosen according to Strategy 1 in Chapter 3, and the goal of
Section 3.3.6 was to restore accuracy for the coarser grids by removing several basis functions.
The case may arise, however, when the number of basis functions required to achieve the desired
accuracy σ chosen according the error estimate in Strategy 3 may exceed the maximum number
of basis functions which can be resolved at the discrete boundary γ. Therefore, we will now
consider a guideline for setting the maximum number of basis functions on a given segment of
the boundary curve.

Without loss of generality, let us consider the segment Γ1 = Γ|s∈[0,`), where s denotes the
arc length on the segment Γ1. Then the arc length along Γ1 is equal to `, and let L be the
total arc length of the curve Γ. Given that the grid involved is uniform and Cartesian, we can
expect that the average “step size” of the orthogonal projections of the discrete boundary γ

onto the boundary curve Γ will be roughly the same on each segment, and it can be expressed
as L/|γ|. We suggest as a rule-of-thumb that the minimum distance between roots of the largest
Chebyshev polynomial TN (s) defined on Γ1 (i.e., an interval of length `) should not be larger
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than the average resolution L/|γ|. In other words, we seek the largest N for which

L

|γ|
≥ min

TN (s)=0
(sj+1 − sj) (5.1)

is satisfied, where sj+1 > sj are consecutive roots of TN (s) on the interval s ∈ [0, `). The roots
of the Chebyshev basis function TN (x) on the canonical interval x ∈ [−1, 1] are given by

xj = cos
(

2k − 1
2N

π

)
, j = 1, . . . , N, (5.2)

and it is clear from the symmetry of the cosine function that the minimum of (5.1) will always
be achieved at the endpoints: x1, x2 or xN−1, xN . The interval x ∈ [−1, 1] is mapped linearly
to the arc length s ∈ [0, `j ] so that s = 1

2(x`+ `), see (3.32a). The minimum distance between
roots on the interval [0, `) in (5.1) then becomes

min
TN (s)=0

(sj+1 − sj) = s2 − s1 =
1
2

(x2`+ `)− 1
2

(x1`+ `) =
`

2
(x2 − x1). (5.3)

Furthermore, by using the fourth-order Maclaurin approximation cos θ ≈ 1 − θ2

2 + O(θ4) we
may approximate the difference (x2 − x1) as follows:

x2 − x1 = cos
( π

2N

)
− cos

(
3π
2N

)
≈ π2

N2
. (5.4)

Therefore, combining (5.4) with (5.3) and substituting into (5.1), the inequality (5.1) becomes

L

|γ|
≥ `

2
π2

N2
, (5.5)

which we rearrange to yield

N ≤
√
|γ|`π2

2L
. (5.6)

The largest integer N which satisfies inequality (5.6) gives approximately the Chebyshev
basis function for which the closest roots of the basis function on the interval [0, `) are approx-
imately equal to the average distance between the normal projections of the discrete boundary
γ onto the continuous boundary curve Γ. As such, the bound (5.6) does not represent an exact
bound for the largest number of basis functions that may be taken before accuracy is lost,
which we illustrate by comparison to a previously explored case. It was noted in the discussion
of Section 4.3.1 that for problems on a 64 × 64 grid with two equal boundary arcs of length
π along the unit circle that the empirically determined saturation point for Chebyshev basis
functions was around N = 45. By comparison, noting that on this grid the number of grid
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nodes in the discrete boundary is |γ| = 472, the bound (5.6) becomes

N ≤
√
|γ|`π2

2L
=

√
(472)(π)π2

2(2π)
≈ 34. (5.7)

5.2.2 Numerical investigation of the adequate truncation tolerance

In the following numerical investigation, we seek to gain insight into the relationship between
the overall error of the scheme and the truncation tolerance σ of the series expansion of the
boundary conditions. To do this, we will solve a problem on a single grid with what is known
from previous experience to be more basis functions than needed to resolve the solution up to
the full accuracy of the FD scheme for that problem. Then, we will solve the same problem
again, removing basis functions one at a time. We repeat this until a detrimental effect on
the error is observed. At that point, we compare the truncation error of the expansion of the
boundary data with the overall error of the scheme. It is well known that the truncation error
of the Chebyshev expansion can be estimated by the last coefficient in the expansion, and so
the magnitude of the last Chebyshev coefficient will be used for comparison to the error of the
scheme.

For this test we will solve the same mixed BC problem as in Section 3.3.4. This problem
uses a split Chebyshev basis on the circular boundary Γ with segments Γ1 = {(r, θ) : r =
1, θ ∈ [0, 2π/3)} and Γ2 = {(r, θ) : r = 1, θ ∈ [2π/3, 2π)}. The wavenumber for the problem is
again k = 10. The only departure from the parameters specified in Section 3.3.4 will be that
the number of basis functions used on each boundary segment will now be different from one
another, as was introduced in Section 3.3.7. The computations are performed on a grid of size
512× 512, and we begin with a tolerance σ = 3.8 · 10−10, which exceeds the error for this grid
found in Table 3.3 by several orders of magnitude. This results in bases of size N1 = 35 on Γ1

and N2 = 65 on Γ2, which we reduce by 1 basis function on each segment for each trial. We
denote by σ1, σ2 the empirical tolerances on the segments Γ1,Γ2 of the boundary curve. The
results are summarized in Table 5.3.

We observe in Table 5.3 that accuracy is lost when the larger of the truncation tolerances
becomes larger than the expected error, and this progression is clearly seen in the final three
rows. This provides evidence that the tolerance σ on each boundary segment should be roughly
equal to the error of the FD scheme in order to maintain accuracy of the overall algorithm.

5.3 A Numerical Example Using the a priori Error Estimate

In this example, we wish to use the average pollution coefficient CP = 0.072 obtained in
Section 5.1.1 to solve a problem which shares the same geometry but is otherwise different from
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Table 5.3: As the tolerances σ1, σ2 approach the error of the FD scheme, accuracy is lost.

(N1, N2) Error σ1 σ2

(35,65) 4.12 · 10−7 3.80 · 10−10 3.80 · 10−10

(34,64) 4.12 · 10−7 1.14 · 10−9 7.69 · 10−10

(33,63) 4.11 · 10−7 3.33 · 10−9 1.52 · 10−9

(32,62) 4.11 · 10−7 9.62 · 10−9 2.98 · 10−9

(31,61) 4.11 · 10−7 2.74 · 10−8 5.83 · 10−9

(30,60) 4.12 · 10−7 7.70 · 10−8 1.13 · 10−8

(29,59) 4.10 · 10−7 2.13 · 10−7 2.18 · 10−8

(28,58) 5.30 · 10−7 5.79 · 10−7 4.19 · 10−8

(27,57) 1.28 · 10−6 1.55 · 10−6 7.99 · 10−8

the problems solved thus far. Therefore, the domain Ω will continue to be a disk of radius 1
centered at the origin with the AP (2.51) which again has side length s = 2.2 as in all previous
simulations of Chapters 3-4.

As a test solution, we take a sum of two plane waves in orthogonal directions and different
wavelengths, u = eikx+ei(2k)y. The wavenumber k = 13.32 is used since we have elsewhere used
only integer values of k. Applying the Helmholtz operator L to this test solution results in an
inhomogeneous right-hand side f = −3k2ei(2k)y of the BVP (3.1a). For the boundary condition
(3.1b) on the disk, we take a Robin BC of the type (3.24) the following discontinuous Robin
coefficients:

A(θ) =

{
θ2 + 1, θ ∈ [0, π)
ln(θ), θ ∈ [π, 2π)

,

B(θ) =

{
cos θ − θ, θ ∈ [0, 3π/2)

sin2 θ, θ ∈ [3π/2, 2π)
,

(5.8)

and the right-hand side φ that is generated from plugging the test solution with these coefficients
into (3.24). The series expansion of this Robin BC will require a 3-part Chebyshev basis on the
segments Γ1 = {r = 1, θ ∈ [0, π)},Γ2 = {r = 1, θ ∈ [π, 3π/2)},Γ3 = {r = 1, θ ∈ [3π/2, 2π)}.
In the cases where the number of basis functions determined by the tolerance σ exceed the
maximum suggested on the grid by the inequality (5.6), the maximum is used, and this occurs
on the grids of size 64× 64 and 128× 128 in Table 5.4. For the subsequent grids the tolerance
σ = CPh

4k5 dictates a smaller number of basis functions than the maximum specified by (5.6),
and the numbers of basis functions reported for these grids in Table 5.4 reflect the truncation
as determined by this tolerance. The results are displayed in Table 5.4, and the real part of the
numerically computed solution on the 256× 256 grid is plotted in Figure 5.2.

117



Figure 5.2: Real part of the numerically computed test solution u = eikx + 2ei(2k)y with
wavenumber k = 13.32 on a 256× 256 grid.
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Table 5.4: The number of basis functions for the grids 64 × 64 and 128 × 128 is determined
by the inequality (5.6), while for the finer grids it is determined by the truncation tolerance σ
obtained from the average pollution coefficient from the previous computations of Table 5.2.

Grid ||u− unum||∞ Convergence Rate σ = CPh
4k5 (N1, N2, N3)

64× 64 4.97 - 4.21 · 10−2 (34,24,24)
128× 128 1.88 · 10−2 8.05 2.63 · 10−3 (48,34,34)
256× 256 1.81 · 10−4 6.70 1.65 · 10−4 (60,39,37)
512× 512 1.25 · 10−5 3.85 1.02 · 10−5 (64,42,40)

1024× 1024 7.69 · 10−7 4.02 6.43 · 10−7 (68,45,43)
2048× 2048 4.64 · 10−8 4.05 4.02 · 10−8 (72,47,46)

It is noted that the overall error appears somewhat higher than our expectation for the
coarser grids. This is due to the fact that we truncate the basis according to inequality (5.6)
on each segment rather than using the tolerance σ since this could potentially result in a
degradation of the linear independence of the basis functions at the discrete boundary γ due
to the lack of sufficient resolution, as discussed in Section 5.2.1. As noted at the end of that
discussion, it may be that we can safely take a few more basis functions and somewhat improve
the overall accuracy, but, other than by experimentation, we do not know the actual saturation
point of the basis. As the grid is refined by a factor of 2, the number of points at the grid
boundary γ also roughly doubles and the lack of resolution is quickly alleviated, thus we are
able to use the truncation tolerance σ to determine the number of basis functions and achieve
a result that resembles the error estimate for the remaining grids, 256× 256 and finer.
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Chapter 6

Considerations for Future Work

This chapter summarizes a variety of ways in which the present work can be extended, and
is organized as follows. In Section 6.1, direct extensions of the 2D algorithm presented in this
dissertation are considered, while in Section 6.2 the more comprehensive extension to a 3D
setting is discussed.

6.1 Extensions of the 2D Algorithm

Basis Functions One may note that we have employed two different choices of basis functions
for the expansion of the boundary data in the preceding chapters: the Fourier and Chebyshev
functions, see Sections 3.2.4 and 3.2.5, respectively. In general, any set of orthogonal basis
functions may be used, and other choices may be desirable if, for example, they are expected
to converge more rapidly for the problem at hand or are otherwise necessitated by the nature
of the boundary conditions.

It should be noted then that if the boundary condition involves products of functions, such
as the general variable coefficient Robin boundary condition (3.24), then our method relies on
expressing the basis coefficients of a product as a convolution of the coefficients of individual
factors, and formulae for such were used for both the Fourier and Chebyshev coefficients in
this work — see formulae (3.25) and (A.2), respectively. The proposed methodology is valid
for any system of basis functions on the boundary Γ for which a relation of this type can
be obtained. However, if one desires to use a basis for which no corresponding formula can
be conveniently obtained, an alternative to convolution-type formulae may be provided by
collocation techniques, see, e.g., [42, 41].

Boundary Partitions One of the major contributions of this work was the piecewise
parametrization of the boundary curve, as this is precisely what allowed for the treatment

120



of a wide range of boundary conditions, including mixed BCs (e.g., Section 3.3.4), Robin BCs
with discontinuous coefficients (e.g., Section 3.3.5), and non-smooth boundary data (e.g., Sec-
tion 4.3.2).

Partitioning the boundary into segments may alleviate other difficulties in addition to han-
dling sophisticated boundary conditions. It may also be useful when, for example, the resolution
at the boundary needs to be increased locally, which may be necessary on a more general bound-
ary curve Γ on a segment with high curvature. Another potential use is when the boundary
itself is defined as a composition of independently parameterized segments rather than as one
curve with a global parametrization, such as a square or other shapes with corners.

A partitioned boundary may also be used in cases where there is no reason inherent to the
geometry or BC to do so, as was demonstrated in, e.g., Section 3.3.8. This may be useful if
one desires to solve several related problems which may or may not have complications in the
boundary conditions at known locations along the boundary curve, so that one and the same
partition of the boundary curve (and therefore the same basis) may be used either way, the
efficiency of which we have remarked on in Sections 3.3.1 and 4.2.2.

Singularities In Chapter 4, we implement the method of singularity subtraction with a local
conformal mapping to treat singularities resulting from discontinuous boundary data while
maintaining the high-order accuracy of the scheme. The case of singularities arising from ge-
ometric corners is remarked upon in Section 4.1.1, but was only used as a foundation for
curved boundaries via the conformal mapping in Section 4.1.2. A logical next step would be to
consider near-boundary singularities that are due not only to the discontinuities in the data,
but also to geometric irregularities, such as corners or cusps. All of the necessary analysis
for this formulation has already been performed in Section 4.1. To make the overall approach
more general, one will also need to account for a larger class of boundary conditions beyond
the Dirichlet and Neumann cases treated in this work. An even more comprehensive extension
would involve the analysis of singularities at the interface between two materials when solving
transmission/scattering problems, see [17], wherein singularities may arise from discontinuities
in the interface conditions/data and/or the geometric irregularities of the interface itself.

Higher Wavenumbers We also note that neither in this dissertation nor in previous papers
devoted to solving the Helmholtz equation by the method of difference potentials, see [25,18,17],
has the performance of this method been extensively studied in the case of large wavenumbers.
Section 5.1.1 presents the highest wavenumbers yet used with the method of difference po-
tentials, with the largest being k = 26. Although results for the wavenumbers k = 3, . . . , 26
are presented there in Table 5.2, the design of the numerical study and subsequent analysis
only begins to shed light on the subject. As remarked upon in Section 5.2, larger wavenumbers
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will require higher dimensions N of the basis chosen on the boundary Γ, see formula (3.17),
increasing the overall computational load. We expect, however, that N will increase slowly
since the solutions we are computing are sufficiently smooth by design, even for problems with
boundary singularities (since the singularities are removed prior to numerical approximation).
The choice of the tolerance σ for the truncation of the series expansion of the boundary data
will also be vital to maintaining efficiency, see Section 5.2. The topic of higher wavenumbers
may require additional consideration in the future, but in the meantime we mention only that,
similarly to any other finite difference approach, our methodology is prone to the pollution
effect, which is precisely the reason why we use high order accurate schemes, see Chapter 2.

The obvious way to combat the pollution effect as the wavenumber becomes very large is by
using even higher order schemes; however, one may note that a higher order compact scheme
will require a higher order Taylor extension (see Section 3.2.1). Sixth-order accurate schemes
for the Helmholtz equation have been developed for constant-coefficient [31] as well as variable
wavenumber [32] equations. Increasing the order of accuracy even further naturally leads to
a question of whether a spectral approximation can be used. On one hand, the AP is always
formulated on a simple domain, such as a rectangle. This is done primarily for the reason of
making its numerical solution easy and efficient, and of course, such an AP can be as easily
solved by a spectral method as by high order finite differences. On the other hand, in the core of
the method of difference potentials is the reduction of the governing equation from the domain
to the boundary in the form of the BEP (3.4). This requires that the equation be approximated
on a local stencil, so that the grid boundary γ is located near Γ. For spectral methods this is
not intuitively possible because formally one can interpret a spectral discretization as having a
stencil that occupies the entire domain. Altogether, we leave the question of further improving
the approximation accuracy beyond 4th or 6th order in the method of difference potentials for
future investigation.

6.2 Extension of the algorithm to 3D

Previously, the method of difference potentials has been used in 3D to construct the artificial
boundary conditions for fluid flow computations [66] and for quasi-state plasma simulations [15],
but no work of the nature that we propose. The methods presented in this dissertation can
be extended to problems in 3D; however, it will require building and testing all the basic
components of an algorithm based on the method of difference potentials. While all the key
ideas of the method from 2D remain the same, its implementation for solving 3D boundary
value problems will imply a number of substantial changes throughout the entire procedure,
and many of these issues which require special attention are due to the geometry.
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Boundary surfaces In 3D, it is more challenging to determine whether a given point (i.e.,
a grid node) lies inside or outside of a given closed surface than for the analogous 2D problem.
An efficient solution to this problem determines the efficiency of partitioning of the set M0

into M+ and M−, see Section 3.1.2 and Figure 3.1. This problem has been extensively studied
in the areas of computer graphics and computational geometry [67, 68, 69, 70] and subsequent
work on adaptive Cartesian mesh generation for local grid refinement was developed as part of
Cart3D [71] even for moving boundaries in time-dependent problems [72].

Finding a convenient representation for the boundary surface Γ may also prove more difficult
than in 2D (unless it is a simple analytical shape, e.g., a sphere) and may require using multiple
patches to parameterize the wide class of shapes in which we are interested (this approach
has been used in [73, 74]). Furthermore, choosing a good basis (3.16) on the two-dimensional
surface Γ that would enable an efficient (i.e., low-dimensional) representation (3.17) may be
more difficult than constructing a basis on the one-dimensional curve Γ. In 2D, Fourier or
Chebyshev bases were sufficient to represent one-dimensional functions on the boundary curve,
but choosing a suitable basis for two-dimensional functions on the boundary surface which
admit an efficient representation may be more difficult. Construction of the extension operator
Ex , see Section 3.2.1, is likely to require special surface-oriented coordinates [75], whereas in
2D this can be done in the general case by representing a curve by normal and tangential
coordinates.

Solvers Finite difference schemes for the 3D Helmholtz equation will also be needed. A fourth
order method for the variable-coefficient Helmholtz equation in 3D may be developed by the
same equation-based method of Chapter 2 for 2D. In fact, sixth order schemes for the Helmholtz
equation with variable wavenumber in both 2D and 3D has been introduced and tested in [32].

However, unlike in 2D, preconditioned iterative solvers provide the only realistic avenue for
solving the AP in the case of variable coefficients, as opposed to the direct solvers that we
have used in 2D. An iterative solver that can be easily parallelized to the Helmholtz equation
discretized by compact high-order schemes has been successfully implemented in [32]. Addi-
tionally, a class of efficient complex-shifted Helmholtz preconditioners that can be inverted by
multigrid is described in [76, 77]. For constant coefficient interior problems, the solution by
the separation of variables method, as was suggested for 2D in Section 3.1.1, will remain the
most efficient approach in 3D; however, for exterior problems one may use convolution with the
discrete fundamental solution, which automatically takes into account the proper behavior of
the solution in the far field, accelerated by the fast multipole method, see [15, Appendix C].
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Appendix A

Chebyshev coefficients for the

product of two functions

The expansion of a smooth bounded function f(x), x ∈ [−1, 1], in the Chebyshev basis
{Tn(x)}∞n=0 is given by

f(x) =
∞∑
n=0

f̂nTn(x), where f̂n =

1
2

∫ 1
−1 ω(x)f(x)Tn(x)dx, n = 0,∫ 1
−1 ω(x)f(x)Tn(x)dx, n > 0.

(A.1)

Let f(x) and g(x) be smooth on x ∈ [−1, 1]. Then, according to the definition of the Chebyshev
coefficients, see (A.1), we have:

(̂fg)0 =
1
2

∫ 1

−1
ω(x)f(x)g(x)T0(x)dx =

1
2

∫ 1

−1
ω(x)f(x)

[ ∞∑
m=0

ĝmTm

]
dx

=
1
2

∞∑
m=0

ĝm

∫ 1

−1
ω(x)f(x)Tm(x)dx =

1
2

(
ĝ0(2f̂0) +

∞∑
m=1

ĝmf̂m

)
= ĝ0f̂0 +

1
2

∞∑
m=1

ĝmf̂m.

(A.2a)
For n > 0, we take into account that

Tn(x)Tm(x) =

1
2(Tm+n(x) + Tm−n(x)), m ≥ n,
1
2(Tm+n(x) + Tn−m(x)), m < n,
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and using (A.1) obtain:

(̂fg)n =
∫ 1

−1
ω(x)f(x)g(x)Tn(x)dx =

∫ 1

−1
ω(x)f(x)

[ ∞∑
m=0

ĝmTm

]
Tn(x)dx

=
∞∑
m=0

ĝm

∫ 1

−1
ω(x)f(x)Tm(x)Tn(x)dx

=
n−1∑
m=0

ĝm ·
1
2

[(∫ 1

−1
ω(x)f(x)Tm+n(x)dx

)
+
(∫ 1

−1
ω(x)f(x)Tn−m(x)dx

)]

+
∞∑
m=n

ĝm ·
1
2

[(∫ 1

−1
ω(x)f(x)Tm+n(x)dx

)
+
(∫ 1

−1
ω(x)f(x)Tm−n(x)dx

)]

=
1
2

(
n−1∑
m=0

ĝm

(
f̂m+n + f̂n−m

)
+ ĝn

(
f̂2n + 2f̂0

)
+

∞∑
m=n+1

ĝm

(
f̂m+n + f̂m−n

))
.

(A.2b)

We expect formula (A.2b) to be symmetric with respect to f and g. While this is not immediate
in the formula itself, it can easily be shown. To see the symmetry of (A.2b) with respect to f and
g, first re-arrange the summations by the f̂ subscripts (i.e., one summation for m+n terms, one
for n−m, and one for m− n). Then, after appropriate substitutions in the summation indices
(respectively, j = m + n, j = n −m, and j = m − n), the form of (A.2b) with interchanged g

and f terms can be obtained by regrouping the summation terms.
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Appendix B

Singularity Subtraction Test

Problems 2 through 6

Test 2 The Dirichlet boundary data for this test have discontinuous first derivative at (±R, 0):

u|r=R =

{
π/2− ϕ, 0 < ϕ < π,

ϕ− 3π/2, π < ϕ < 2π,

or, after the mapping (4.19),

u(ξ, 0) =


π

2
+ arctan

2ξ
ξ2 − 1

, ξ > 0,

π

2
− arctan

2ξ
ξ2 − 1

, ξ < 0.

Equivalently, in polar coordinates (ρ, θ) on the (ξ, η) plane on the edges of the wedge with angle
π we have:

u|θ=0 =
π

2
+ arctan

2ρ
ρ2 − 1

,

u|θ=π =
π

2
+ arctan

2ρ
ρ2 − 1

.

(B.1)

The Taylor expansion of the data (B.1) at ρ = 0 (which corresponds to the singular point
(R, 0)) reads:

u|θ=0,π =
π

2
− 2ρ+

2
3
ρ3 − 2

5
ρ5 + . . . (B.2)

Note that the formally identical expressions (B.1), (B.2) for the boundary conditions in the
coordinates (ρ, θ) undergo a jump in the derivative since the differentiation w.r.t. ρ is done in
the opposite directions on the rays θ = 0 and θ = π. Moreover, after the conformal mapping
the singularity of the boundary data appears in all odd derivatives.
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The coefficients of the asymptotic expansion at the point (R, 0) are given by

A0(θ) =A2(θ) = 0, A1(θ) =
4 sin θ
π

,

A3(θ) =
6 k2R2 − 4

3π
sin 3θ − 2k2R2

π
sin θ, A4(θ) =

4k2R2(cos 2θ − 1)2

3π
,

(B.3)

and

B0(θ) =
π

2
, B1(θ) = C

(B)
1 sin θ +

2 (2θ − π) cos θ
π

,

B2(θ) =C(B)
2 sin 2θ +

πk2R2

2
(cos 2θ − 1) ,

B3(θ) =− 1
2
k2R2 sin θC(B)

1 + sin 3θC(B)
3 +

1
9π

[
12
{(

6k2R2 − 4
)

cos2θ − 6k2R2 + 3
}

(θ − π/2) cos θ+

sin θ
{

9k2R2
(
π2 + 4/3

)
− 2
}

+ sin θcos2θ
(
8− 12k2R2

) ]
,

B4(θ) =
1
3
k2R2(cos 2θ − 1)2C

(B)
1 − 1

3
k2R2 sin 2θC(B)

2 + sin 4θC(B)
4 −

k2R2

6π

[
cos22θ +

{
8θ sin 2θ − 16

/
3 +

(
k2R2 − 6

)
π2
}

cos 2θ

+
{
π2
(
3− k2R2

/
4
)
− 7/6

}
cos 4θ + (8π − 16θ) sin 2θ + 11

/
2 + 3π2

(
1− k2R2

/
4
)]
.

(B.4)
The asymptotic expansion at the opposite singular point (−R, 0) is obtained from that at the
point (R, 0) by an odd reflection about the y axis using the symmetry of the boundary condition.

Test 3 The Dirichlet boundary data for this test have discontinuous second derivative (as
well as higher order even derivatives) at the points (±R, 0):

u|r=R =

{
cosϕ, 0 < ϕ < π,

cos 3ϕ, π < ϕ < 2π.

After the conformal mapping we have:

u(ξ, 0) =


cos
(

arctan
2ξ

ξ2 − 1

)
, ξ > 0,

cos
(

3 arctan
2ξ

ξ2 − 1

)
, ξ < 0.

(B.5)
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Finally, in terms of (ρ, θ) the boundary condition (B.5) translates into:

u|θ=0 = cos
(

arctan
2ρ

ρ2 − 1

)
≈
ρ→0

1− 2ρ2 + 2ρ4 − 2ρ6 + . . . ,

u|θ=π = cos
(

3 arctan
2ρ

ρ2 − 1

)
≈
ρ→0

1− 18ρ2 + 66ρ4 − 146ρ6 + . . .

(B.6)

The coefficients of the asymptotic expansion at the point (R, 0) are:

A0(θ) =A1(θ) = A3(θ) ≡ 0, A2 = −16
π

sin 2θ,

A4(θ) =
16
3π
[(

12− k2R2
)

sin 4θ + k2R2 sin 2θ
]
,

(B.7)

B0(θ) =1, B1(θ) = 0,

B2(θ) =C(B)
2 sin 2θ +

(
k2R2 − 2− 16

π
θ

)
cos 2θ +

8
π

sin 2θ − k2R2,

B3(θ) = sin 3θC(B)
3 + 2k2R2 sin θ,

B4(θ) =− 1
3
k2R2 sin 2θC(B)

2 + sin 4θC(B)
4 +

(
k4R4

12
− 5k2R2

3
+ 2
)

cos 4θ

+
1

36π

[ (
4608− 384k2R2

)
θcos22θ +

{(
48k2R2 − 576

)
sin 2θ

−12k2R2
(
πk2R2 − 8π − 16θ

)}
cos 2θ − 160k2R2 sin 2θ + 9πk4R4

+ 192k2R2 (θ − 3π/16)− 2304θ
]
.

(B.8)

Similarly to Test 2, the boundary data are anti-symmetric w.r.t. the y axis, and thus the
asymptotic expansion at (−R, 0) is given by an odd reflection of its counterpart at the point
(R, 0).

Test 4 This is a Neumann test problem, for which the boundary conditions are set for the
normal derivative of the solution. We start with the case of a discontinuity in the normal
derivative itself:

∂u

∂r

∣∣∣∣
r=R

=

{
1, 0 < ϕ < π,

0, π < ϕ < 2π.

Obviously, the normal derivative undergoes a unit jump in the circumferential direction at the
points (±R, 0) (cf. formula (4.28)). It can be easily verified that under the mapping (4.19) the
normal derivative at the boundary in the (ξ, η) coordinates takes the form:

∂u

∂r

∣∣∣∣
r=R

= − 1
2R
(
1 + ξ2

) ∂u
∂η

∣∣∣∣
η=0

,
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where
∂u

∂η

∣∣∣∣
η=0

=

− 2R
1+ξ2 , ξ > 0,

0, ξ < 0,

and the corresponding (ρ, θ) expressions are

1
ρ

∂u

∂θ

∣∣∣∣
θ=0

=− 2R
1 + ρ2

,

1
ρ

∂u

∂θ

∣∣∣∣
θ=π

= 0.
(B.9)

Note that in general the following relation holds between the derivatives:

∂u

∂η

∣∣∣∣
η=0

= − 1
ρ

∂u

∂θ

∣∣∣∣
θ=π

, ξ < 0. (B.10)

Hence, one must remember the additional minus sign on the negative semi-axis ξ < 0. For this
particular test problem though, this issue is obscured by the zero condition on ξ < 0.

Finally, the power series expansion of the conditions (B.9) on the rays θ = 0, θ = π is

∂u

∂θ

∣∣∣∣
θ=0

= − 2Rρ
1 + ρ2

≈
ρ→0
−2R

(
ρ− ρ3 + ρ5 − . . .

)
,

∂u

∂θ

∣∣∣∣
θ=π

= 0.

The coefficients of expansion (4.16) at the point (R, 0) are given by

A0(θ) =− 2R cos θ
R

, A1(θ) = 0,

A2(θ) =
R
(
2− k2R2

)
3π

cos 3θ +
k2R3

π
cos θ, A3(θ) =

2k2R3

3π
(sin 4θ − 2 sin 2θ) ,

(B.11)

B0(θ) =C(B)
0 cos θ +

2R
π

[(θ − π) sin θ + cos θ] , B1(θ) = C
(B)
1 cos 2θ,

B2(θ) =− k2R2

2
cos θC(B)

0 + C
(B)
3 cos 3θ +

4R
3π

[ (
k2R2

/
6− 1/3

)
cos3θ

−
(
5k2R2

/
4− 1/4

)
cos θ − 1

2
sin θ (π − θ)

{
2cos2θ

(
k2R2 − 2

)
+ 1− 2k2R2

} ]
,

B3(θ) =
k2R2

3
(2 sin 2θ − sin 4θ)C(B)

0 + C
(B)
3 cos 4θ +

4k2R3

3π

[
θ
{

cos22θ + 1/4
}

+
{
π − θ − 1

8
sin 2θ

}
cos 2θ +

4
3

sin 2θ − 2
3

sin 4θ − 3
4
π
]
.

(B.12)

The asymptotic expansion at (−R, 0) is obtained by an even reflection about the y axis.
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Test 5 In this test, the Neumann boundary data undergo a jump discontinuity in the first
derivative,

∂u

∂r

∣∣∣∣
r=R

=

{
π/2− ϕ, 0 < ϕ < π,

ϕ− 3π/2, π < ϕ < 2π.

In terms of (ρ, θ), we have (in accordance with the comment right after equation (B.10)):

∂u

∂θ

∣∣∣∣
θ=0

= − 2Rρ
1 + ρ2

(
π

2
+ arctan

2ρ
ρ2 − 1

)
≈
ρ→0
−R

(
πρ− 4ρ2 − πρ3 +

16
3
ρ4 + . . .

)
,

∂u

∂θ

∣∣∣∣
θ=π

=
2Rρ

1 + ρ2

(
π

2
+ arctan

2ρ
ρ2 − 1

)
≈
ρ→0

R

(
πρ− 4ρ2 − πρ3 +

16
3
ρ4 + . . .

)
.

The coefficients of expansion (4.16) at the point (R, 0) are as follows:

A0(θ) = A2(θ) = 0, A1(θ) =
4R
π

cos 2θ,

A3(θ) =
1

3π
[
2R
(
k2R2 − 4

)
cos 4θ − 4k2R3 cos 2θ

]
,

(B.13)

B0(θ) =C(B)
0 cos θ − πR sin θ, B1(θ) = C

(B)
1 cos 2θ − 2R

π
[(2θ − π) sin 2θ + cos 2θ] ,

B2(θ) = −k
2R2

2
cos θC(B)

0 + C
(B)
2 cos 3θ − πR

6
[(
k2R2 − 2

)
sin 3θ − 3k2R2 sin θ

]
,

B3(θ) =− k2R2

3
(sin 4θ − 2 sin 2θ)C(B)

0 − k2R2

3
cos 2θC(B)

1 + cos 4θC(B)
3

− 4R
3π

[(1
8
k2R2 − 1

2

)
cos22θ +

1
2

{
k2R2

(
θ − π

2

)
+ 2π − 4θ

}
sin 4θ

− k2R2

2

(
π2 +

5
3

)
cos 2θ − k2R2

(
θ − π

2

)
sin 2θ +

1
4

+
3k2R2

8

(
π2 − 1

6

)]
.

(B.14)

The asymptotic expansion at (−R, 0) is obtained by an odd reflection about the y axis.

Test 6 This final test employs the boundary data with a discontinuity in the second derivative:

∂u

∂r

∣∣∣∣
r=R

=

{
cosϕ, 0 < ϕ < π,

cos 3ϕ, π < ϕ < 2π.

In terms of (ρ, θ), the boundary conditions read:

∂u

∂θ

∣∣∣∣
θ=0

= − 2Rρ
1 + ρ2

cos
(

arctan
2ρ

ρ2 − 1

)
≈
ρ→0

R
(
−2ρ+ 6ρ3 − 10ρ5 + . . .

)
,

∂u

∂θ

∣∣∣∣
θ=π

=
2Rρ

1 + ρ2
cos
(

3 arctan
2ρ

ρ2 − 1

)
≈
ρ→0

R
(
2ρ− 38ρ3 + 170ρ5 − . . .

)
.
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The coefficients of expansion (4.16) at the point (R, 0) are given by

A0(θ) = A1(θ) = A3(θ) = 0, A2(θ) =
32R
3π

cos 3θ, (B.15)

B0(θ) = C
(B)
0 cos θ − 2R sin θ, B1(θ) = C

(B)
1 cos 2θ,

B2(θ) =− k2R2

2
cos θC(B)

0 + C
(B)
2 cos 3θ − 4R

3π

[ {
π
(
k2R2 − 6

)
− 32θ

}
cos2θ sin θ

+
(

3π
2
− πk2R2 + 8θ

)
sin θ − 16

3
cos3θ + 4 cos θ

]
,

B3(θ) =− k2R2

3
(sin 4θ − 2 sin 2θ)C(B)

0 − k2R2

3
cos 2θC(B)

1

+ cos 4θC(B)
3 +

k2R3

3
(4 cos 2θ − 3) .

(B.16)

The asymptotic expansion at (−R, 0) is obtained by an odd reflection about the y axis.
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